
RAGE PRO and Derivatives
Programmer’s Guide

Technical Reference Manual
P/N: PRG-215R3-00-10 Rev 1.0

© 2000 ATI Technologies Inc.

The information contained in this manual has been carefully checked and is
believed to be entirely reliable. No responsibility is assumed for
inaccuracies. ATI reserves the right to make changes at any time to improve
design and supply the best product possible.

ATI, mach64, 3D RAGE, RAGE THEATER, RAGE 128, and
RAGE HDTV are trademarks of ATI Technologies Inc. All other trademarks
and product names are properties of their respective owners.

CONFIDENTIAL MATERIAL
All information contained in this manual is confidential material of ATI
Technologies Inc. Unauthorized use or disclosure of the information
contained herein is prohibited.
You may be held responsible for any loss or damage suffered by ATI for your
unauthorized disclosure hereof, in whole or in part. Please exercise the
following precautions:

• Store all hard copies in a secure place when not in use.
• Save all electronic copies on password protected systems.
• Do not reproduce or distribute any portions of this manual in paper or

electronic form (except as permitted by ATI).
• Do not post this manual on any LAN or WAN (except as permitted by

ATI).
Your protection of the information contained herein may be subject to
periodic audit by ATI. This manual is subject to possible recall by ATI.

• mach64 BIOS Kit (BIO-G01000)

• mach64 Graphics Controller Specifications ATI-264CT/ET
(GCS-C022001-00)

• mach64 Graphics Controller Specifications ATI-88800GX
(GCS-C012001-00)

• mach64 Graphics Controller Specifications ATI-264VT (GCS-
C02500)

• mach64 Programmer’s Guide (PRG-G01000)

• mach64 Register Reference Guide (RRG-S022001-00)

• mach64 Register Reference Guide ATI-264VT
(RRG-C02500)

• mach64 VGA Register Guide (VGA-S022001-00)

Release Date Description of Changes

1.0 March 00

Formerly Mach64 Programmer’s Guide.
Updated Chapters 1,3,7,8. Removed old
Appendices A-F and added new
Appendices A-K.

Record of Revisions

Technical Reference Manuals

Table of Contents

Chapter 1: Overview
1.1 Introduction ...11

1.2 Brief History of ATI Graphics Products ...11
1.2.1 VGAWONDER ...11
1.2.2 mach8...12
1.2.3 mach32...12
1.2.4 mach64...12

1.3 mach64CT Family ...15
1.3.1 mach64VT ...15
1.3.2 mach64GT (3D RAGE, RAGE II, II+, IIC, RAGE PRO)...................................15
1.3.3 mach64LB (RAGE LT-PRO) ..15
1.3.4 mach64GM (RAGE XL) ...16
1.3.5 mach64LM (RAGE MOBILITY M/P/ M1) ...16

1.4 Features..17
1.4.1 mach64 Major Features ...17
1.4.2 Functional Enhancements Relative To mach32...18
1.4.3 Deletions Relative To mach32...18
1.4.4 Functional Differences From mach32 ...19

1.5 Overview of the Manual..19
1.5.1 Chapter-By-Chapter Summary ..19
1.5.2 Notations And Conventions Used In This Manual ..20

Chapter 2: Using the mach64
2.1 Introduction ... 2-1

2.2 Intel Based Architecture .. 2-1
2.2.1 Memory Map ... 2-1
2.2.2 BIOS Services.. 2-2
2.2.3 Registers... 2-3

2.3 Non-Intel Based Architecture.. 2-6
2.3.1 Memory Map ... 2-6
2.3.2 BIOS Services.. 2-7
2.3.3 Registers... 2-7
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential TOC-1

Table of Contents
Chapter 3: Getting Started
3.1 Introduction ..3-1

3.2 Before you start ..3-1
3.2.1 Accelerator vs. VGA ..3-1
3.2.2 Linear Aperture vs. VGA Aperture ..3-2
3.2.3 Protected Mode vs. Real Mode...3-4

3.3 mach64 Detection...3-5
3.3.1 Card Detection ..3-5
3.3.2 I/O Base ..3-6
3.3.3 Read/Write Test ..3-7
3.3.4 CONFIG_CHIP_ID ..3-7

3.4 Mode Switching ...3-7
3.4.1 BIOS Interface ..3-9
3.4.2 Manual Mode Switching and Custom CRT Modes..3-10

Chapter 4: Linear Aperture
4.1 Introduction ..4-1

4.2 Aperture Base Address...4-1

4.3 Convert Physical Address ..4-2

4.4 Enable the Aperture..4-3

4.5 Using the Linear Aperture..4-3
4.5.1 Memory Organization Of Pixels...4-3

4.6 Complete Example of Using the Aperture ...4-5

4.7 VGA Interaction ...4-6

Chapter 5: Engine Initialization
5.1 Introduction ..5-1

5.2 Background Information on the mach64 Engine ...5-1
5.2.1 Command FIFO Queue...5-1
5.2.2 Other Essentials ..5-3

5.3 Preliminary Essentials ..5-3
5.3.1 mach64 Detection ...5-3
5.3.2 Hardware Query..5-3
5.3.3 Save/Restore Old Video Mode Information ...5-3
5.3.4 Open Mode ...5-3
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
TOC-2 Proprietary and Confidential

Table of Contents
5.3.5 Initializing The Engine .. 5-3

5.4 Opening and Closing a Mode .. 5-4
5.4.1 Opening.. 5-4
5.4.2 Reading from the Palette.. 5-6
5.4.3 Writing to the Palette ... 5-6

5.5 Initializing the Engine ... 5-7
5.5.1 Setup Standard Engine Context ... 5-7
5.5.2 InitEngine Example ... 5-9

Chapter 6: Engine Operations
6.1 Introduction ... 6-1

6.2 Background Information ... 6-1
6.2.1 Details About the Registers ... 6-1
6.2.2 Logical Pixel Data Path ... 6-2
6.2.3 Trajectories .. 6-10
6.2.4 Side Effects Of Trajectories .. 6-19
6.2.5 Source And Destination Alignment .. 6-20
6.2.6 Source and Destination Mixing Logic ... 6-22
6.2.7 Remarks On Pixel Depth ... 6-23

6.3 Draw Operations.. 6-24
6.3.1 Color Source .. 6-24
6.3.2 Standard BitBlt Source .. 6-31
6.3.3 Specialized BitBlt Source .. 6-35
6.3.4 Pattern Source .. 6-38

6.4 Miscellaneous Operations ... 6-40
6.4.1 Drawing In Packed 24 Bit Per Pixel Mode.. 6-40
6.4.2 Scissoring and Masking ... 6-42
6.4.3 Hardware Cursor.. 6-43

Chapter 7: Advanced Topics
7.1 Introduction ... 7-1

7.2 Polygons .. 7-1

7.3 Scrolling and Panning.. 7-5

7.4 CRT Synchronization and Animation ... 7-5
7.4.1 Double Buffering (Memory).. 7-5
7.4.2 Double Buffering (Palette)... 7-6
7.4.3 Single Buffering (Synchronized) ... 7-6
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential TOC-3

Table of Contents
7.4.4 Single Buffering (Delta Framing)...7-7

7.5 Manual Mode Switching And Custom CRT Modes ..7-7
7.5.1 Manual Mode Switching...7-7
7.5.2 Designing A Custom CRT Mode ...7-9

7.6 Interrupts ..7-13

7.7 Off-Screen Memory Management ...7-14

7.8 Boot -Time Initialization ..7-19

7.9 Performance Issues...7-20
7.9.1 Redundancy ..7-20
7.9.2 Draw Speed...7-20
7.9.3 Concurrency..7-21
7.9.4 Efficiency..7-21
7.9.5 Expansion Buses ...7-21
7.9.6 Block Write...7-22
7.9.7 Memory Bandwidth ..7-22
7.9.8 Performance ..7-25

Chapter 8: mach64VT/GT Specific Features
8.1 Introduction ..8-1

8.2 Summary of Additional Features ...8-1

8.3 mach64VT/GT Register Access...8-2
8.3.1 Memory Map ..8-2
8.3.2 Determining Register Address..8-3
8.3.3 Enabling Register Block 1 ..8-4

8.4 Hardware Overlay/Scaler ..8-4
8.4.1 Overlay ...8-5
8.4.2 Scaler ..8-5
8.4.3 Color Keyer ..8-6
8.4.4 Color Interpolator/ Alpha Blender..8-6
8.4.5 Color Space Converter..8-7

8.5 Packed Pixel Modes ...8-8

8.6 Planar Pixel Modes...8-8

8.7 Unpacker / Dynamic Range Corrector ...8-10

8.8 Overlay Programming ..8-11
8.8.1 Overlay Scaling ..8-11
8.8.2 UV Interpolation ...8-12

8.9 Front End Scaler Programming..8-13
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
TOC-4 Proprietary and Confidential

Table of Contents
8.9.1 Front End Scaler Operation ... 8-13
8.9.2 Performing a Blt Using the Front End Scaler .. 8-13

8.10 Bus Master Programming.. 8-15
8.10.1 Bus Master Operation .. 8-15
8.10.2 Creating a Descriptor Table ... 8-15
8.10.3 Setting up a System Bus Master Transfer.. 8-17
8.10.4 Setting up a GUI Master Operation ... 8-17

 Appendix A: Video BIOS Functions Specification
A.1 Calculating ROM Base Address...A-1
A.2 Function Calls...A-1
A.3 Compatibility ..A-1
A.4 Function 00h – Load Coprocessor CRTC Parameters..A-2
A.5 Function 01h – Set Display Mode ..A-3
A.6 Function 02h – Load Coprocessor CRTC Parameters and Set Display Mode...............A-3
A.7 Function 03h – Read EEPROM Data ...A-3
A.8 Function 04h – Write EEPROM Data ..A-4
A.9 Function 05h – Memory Aperture Service ...A-4
A.10 Function 06h – Short Query Function ..A-4
A.11 Function 07h – Return Graphics Hardware Capability List ...A-5
A.12 Function 08h – Return Query Device Data Structure in BytesA-7
A.13 Function 09h – Query Device...A-7
A.14 Function 0Ah – Return Clock Chip Frequency Table..A-8
A.15 Function 0Bh – Program a Specified Clock Entry ...A-8
A.16 Function 0Ch – DPMS Service, Set DPMS Mode ..A-9
A.17 Function 0Dh – Return Current DPMS State in LC...A-9
A.18 Function 0Eh – Set Graphics Controller Power Management StateA-9
A.19 Function 0Fh – Return Current Graphics Controller Power Management State..........A-9
A.20 Function 10h – Set the DAC to Different States ..A-10
A.21 Function 11h – Return External Storage Device Information....................................A-10
A.22 Function 12h – Short Query ...A-11
A.23 Function 13h – Display Data Channel Support (DDC)..A-11
A.24 Function 14h – Save and Restore Graphics Controller States....................................A-14
A.25 Function 15h – Refresh Rate Support...A-15
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential TOC-5

Table of Contents
A.26 Function 16h – Video Feature Support ..A-17
A.27 Function 17h – Enable / Disable Video Input Capture Mode
and Return Video Capture Capability ..A-21
A.28 Function 18h – Reserved for UMA..A-27
A.29 Function 19h – TVOut Hooks (not supported in LT PRO)..A-27
A.30 Query Structure ..A-28
A.31 Mode Table Structure ..A-32
A.32 EEPROM Data Structure..A-34
A.33 CRT Parameter ..A-37
A.34 Scratch Registers ..A-38
A.35 ROM Header ..A-40

A.35.1 TVOut Information ..A-41
A.35.2 Hardware Information Table ...A-42
A.35.3 Multiple TV Standard Feature ...A-44
A.35.4 BIOS Driver Information Table...A-44
A.35.5 Panel EDID Override Table...A-45

 Appendix B: 3D RAGE LT PRO and RAGE Mobility Specific Functions
B.1 Introduction ..B-1
B.2 Function Calls...B-1
B.3 Extended ROM Services ..B-1
B.4 Function 80h - Return Panel Type and Controller Supported InformationB-2
B.5 Function 81h - Return Panel Identity Information ...B-12
B.6 Function 82h – VESA BIOS Extensions / Flat Panel FunctionsB-12
B.7 Function 83h – LCD / Monitor / TV Detection..B-20
B.8 Function 84h – Return / Select Active Display ..B-21
B.9 Function 85h – Return / Select Power Management Mode..B-22
B.10 Function 86h – In and Out Of Suspend State
(not supported in LT PRO and Mobility)...B-23
B.11 Function 87h – Return / Select Refresh Rate ...B-23
B.12 Function 88h – Return / Select Dithering ...B-25
B.13 Function 89h – Return / Select Cursor Blink Rate ...B-26
B.14 Function 8Ah – Hardware ICON Support ..B-26
B.15 Function 8Bh – Set CMOS Information...B-30
B.16 Function 8Ch – Return / Select 475 Lines VGA Mode..B-31
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
TOC-6 Proprietary and Confidential

Table of Contents
B.17 Function 8Dh – Return Current Display Information...B-32
B.18 Function 8Eh - LCD Display Data Channel Support (DDC)B-33
B.19 Function 8Fh – Get / Set Video BIOS Information ..B-34
B.20 Function 04Exxh – System BIOS Int 15h ..B-35

 Appendix C: RAGE XL Specific Functions
C.1 Introduction...C-1
C.2 Function Calls ...C-1
C.3 Function 80h - Return Panel Type and Controller SupportedInformation (not supported in
RAGE XL)..C-1
C.4 Function 81h - Return Panel Identity Information
(not supported in RAGE XL) ...C-2
C.5 Function 82h – VESA BIOS Extensions / Flat Panel Functions (not supported in RAGE
XL) ...C-2
C.6 Function 4F11h – VESA VBE / Flat Panel BIOS ..C-2
C.7 Function 83h – LCD / Monitor / TV Detection ..C-4
C.8 Function 84h – Return / Select Active Display ..C-5
C.9 Function 85h – Return / Select Power Management Mode ..C-6
C.10 Function 87h – Return / Select Refresh Rate..C-8
C.11 Function 88h – Return / Select Dithering ...C-9
C.12 Function 89h – Return / Select Cursor Blink Rate ...C-10
C.13 Function 8Ah – Hardware ICON Support
(not supported in RAGE XL) ...C-11
C.14 Function 8Dh – Return Current Display Information...C-11
C.15 Function 8Eh - LCD Display Data Channel Support (DDC)C-11
C.16 Function 04Exxh – System BIOS Int 15h
(not supported in RAGE XL) ...C-13

 Appendix D: TVOut Specific Functions
D.1 Introduction ..D-1
D.2 Function 70h – Return / Select TVOut Configuration ...D-1
D.3 Function 71h – Return TV Standard...D-3
D.4 Function 72h – Re-initialize Digital Signal Processor ...D-4
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential TOC-7

Table of Contents
D.5 Function 73h – Return / Select TVOut Auto-Display Switch..D-4
D.6 Function 74h – Return TVOut Aligner Information For Slow Aligner Algorithm........D-4
D.7 Function 75h – Return TVOut Aligner Group ...D-5
D.8 Function 76h – Return TVOut Aligner Information For Fast Aligner AlgorithmD-6

 Appendix E: CRTC Parameters
E.1 Introduction... E-1
E.2 CRTC Parameters for 640x480... E-1
E.3 CRTC Parameters for 800x600... E-4
E.4 CRTC Parameters for 1024x768... E-8
E.5 CRTC Parameters for 1152x864... E-11
E.6 CRTC Parameters for 1280x1024... E-14
E.7 CRTC Parameters for 1600x1200... E-17

 Appendix F: Parameter Table Format
F.1 Table Description .. F-1
F.2 Spare Bits in Parameter Table... F-3

 Appendix G: Pixel Clock Tables
G.1 ATI-18811-1 Clock Chip ...G-1

 Appendix H: Scratch Registers
H.1 Scratch Registers and Their Contents ..H-1

 Appendix I: ROM Header
I.1 ROM Header ... I-1

 Appendix J: Programming PLL Registers in mach64 CT Family
J.1 Introduction... J-1
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
TOC-8 Proprietary and Confidential

Table of Contents
J.2 PLL Registers..J-1
J.3 Clock Sources ... J-4
J.4 External Clock Support... J-4
J.5 Frequency Limits .. J-5
J.6 Frequency Synthesis Description.. J-5
J.7 Duty Cycle Control ... J-8
J.8 PLL Gain Settings... J-8

 Appendix K: Display Register Setting Calculations
K.1 Display Register Setting Calculations ..K-1

 Appendix L: Bibliography
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential TOC-9

Table of Contents
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
TOC-10 Proprietary and Confidential

Chapter 1
Overview

1.1 Introduction
This manual is a guide to understanding and programming the mach64 accelerator. The
mach64 accelerator is a fixed-function, 2D graphics accelerator. It is function-compatible,
but not register-compatible, with its predecessor – the mach32 accelerator. It is not
register compatible, yet it is function compatible, with mach32.

Those seeking a general understanding of the features and functions of the mach64 only
need to read Chapter 2: Using the mach64. Very specific examples and techniques are
described in following chapters - Chapter 3: Getting Started; Chapter 4: Linear Aperture;
Chapter 5: Engine Initialization; Chapter 6: Engine Operations; Chapter 7: Advanced
Topics and Chapter 8: mach64TV/GT Specific Features.

The scope of this programmer's guide includes the mach64 VT and GT (3D RAGE,
RAGE PRO and its derivatives which include the LT-PRO, RAGE XL and RAGE
MOBILITY) accelerator chips. Those wishing to obtain programming information on
earlier mach64 variants (GX and CT) should obtain the older version of the mach64
Programmer’s Guide (contact ATI Developer Relations).

1.2 Brief History of ATI Graphics Products
To understand how the mach64 relates to earlier ATI chips for compatibility, a short
discussion of these earlier chips is necessary.

Although ATI did manufacture graphics boards prior to the introduction of the Video
Graphics Array (VGA) by IBM in 1987, they will not be covered in the following
discussion.

1.2.1 VGAWONDER

The VGAWONDER family (ATI18800 and ATI28800) were non-accelerated chips that
fully implemented the IBM VGA standard. In addition, they also supported SuperVGA
graphics modes of up to 1024x768 at 8bpp or 640x480 at 24bpp, depending on chip
revision and amount of memory. These additional modes were supported with
ATI-specific extended VGA registers.

VGAWONDER-based boards only came in ISA bus versions as it predates most of the
extended bus architectures.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-11

Brief History of ATI Graphics Products
1.2.2 mach8

The mach8 (ATI38800) was ATI’s first true Graphics Accelerator, providing hardware
assisted drawing capabilities for 2D primitives like lines, rectangles and polygons. It was
register compatible with the IBM 8514/A Display Adapter. Thus any applications or
drivers that supported the 8514/A would run on a mach8 without any modification. The
mach8 also extended on the 8514/A specification.

The mach8 did not have any VGA compatibility so a separate VGA controller was
required for standard text and VGA modes. Some mach8 boards, like the GRAPHICS
VANTAGE and GRAPHICS ULTRA included a VGAWONDER controller on the same
board as the mach8 to provide this VGA support. The VGA controller had its own
memory, completely separate from the mach8 accelerator’s memory.

mach8-based boards were produced in both ISA and Microchannel versions.

1.2.3 mach32

The mach32 chip (ATI68800) is the immediate predecessor to the current mach64 family.
The mach32 was register compatible with both the IBM 8514/A and the mach8. The
mach32 also contained a VGA controller on the chip that was compatible with the
VGAWONDER so a separate VGA controller was not needed. The memory on the
mach32 board was shared between the VGA controller and the mach32 accelerator.

The mach32 improved upon the mach8 by providing a linear aperture to allow fast image
data transfer by mapping the video memory to the system memory address space. Later
revisions of the mach32 also were able to memory map the mach32 registers to overcome
the performance penalty incurred in going through I/O port-mapped registers. Finally, the
mach32 contained a hardware cursor.

mach32-based boards were produced in five bus types: ISA, EISA, VESA Local Bus,
Microchannel, and PCI.

1.2.4 mach64

The mach64 represented a departure from the mach32 in that it was no longer register
compatible with previous ATI graphics accelerators or the 8514/A. (VGA register
compatibility was retained, however.) This departure was necessary to resolve some
design limitations that were a legacy of the older generation chips. Fortunately, almost all
the functionality that was in the mach32 was preserved in the mach64 design, and some
useful additions and enhancements were incorporated.

As indicated on the table below, the mach64 can be divided into two major types, the GX
family and the CT family. While applications that use the mach64 should run on both
types with little or no modification, there are some important differences between the two
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-12 Proprietary and Confidential

Brief History of ATI Graphics Products
families that are highlighted in the following sections.

Boards based on mach64 are produced in ISA, VESA Local Bus and PCI bus versions.

1.2.4.1 mach64GX Family
The mach64GX Family encompasses the mach64GX (ATI888GX00) and mach64CX
(ATI888CX00) variants. The major distinguishing characteristics of this family are:

• Uses an external DAC

• Uses an external clock synthesizer

Table 1-1 mach64 Product Families

mach64 Feature Set Variations
mach64GX Family mach64CT Family

Feature GX-C/
D GX-E* GX-F CX CT VT

GT
(RAGE I,
RAGE II,
II+, IIC,
RAGE
PRO)

LB/GM
(RAGE

LT-
PRO,
RAGE

XL)

LM
(RAGE
MOBILI

TY
M/P/M1

)
Relocatable I/O (PCI
only)† !† !† ! !

Maximum Memory 8MB 8MB 8MB 4MB 4MB 4MB 8/16 MB
Minimum Memory 512KB 1MB 1MB 512KB 1MB 1MB 1MB
Standard Linear
Aperture (little
endian)

! ! ! ! ! ! !

Extended Linear
Aperture (big endian) ! ! ! ! !

Linear Aperture
Boundary 8MB‡ 16MB 16MB 8MB 16MB 16MB 16MB

ATI SVGA Extended
Register Set ! ! ! !

Supported bus types
ISA,
VLB,
PCI

PCI
ISA,
VLB,
PCI

ISA,
VLB,
PCI

PCI PCI PCI, AGP

* Revision E was a short-lived version that was only used in Apple Power Macintosh-based boards.
†Relocatable I/O requires a hardware strap to be enabled. If the feature is enabled, the standard
 I/O base addresses do not apply.
‡ A 4MB boundary is possible if the linear aperture size is set to 4MB.

 16 MB maximum on 3D RAGE PRO chips only.
C/DRevisions C and D.
∆

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-13

Brief History of ATI Graphics Products
• Support for VRAM

• VGA controller is ATI VGAWONDER compatible

• VGA controller is independently programmable from the accelerator controller
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-14 Proprietary and Confidential

mach64CT Family
From a very rough architectural perspective, the mach64GX family more resembles the
mach32 than it does the mach64CT family. However, from a functionality and register
level perspective, the mach64GX is almost identical to the mach64CT.

1.3 mach64CT Family
The mach64CT Family encompasses the mach64CT (ATI264CT), mach64VT
(ATI264VT) and mach64GT (3D RAGE) variants. The major distinguishing
characteristics of this family are:

• Integrated DAC

• Integrated clock synthesizer

• No VRAM support

• VGA controller is “pure” VGA, not VGAWONDER compatible

• VGA controller is not independently programmable from the accelerator controller

1.3.1 mach64VT

The mach64VT family of chips is built upon the previously mentioned CT. They have the
same feature set as the CT, plus some additional video features such as:

• back end hardware overlay

• back end hardware scaler

1.3.2 mach64GT (3D RAGE, RAGE II, II+, IIC, RAGE PRO)

The mach64GT (commonly known as the 3D RAGE) introduces hardware support for 3D
operations. While low level 3D operations are not discussed in this guide, we do
demonstrate the usage of front and end scaler, which is part of the 3D pipeline. The 3D
RAGE includes all mach64VT features with the addition of:

• hardware 3D acceleration

• improved video filtering

• integrates motion compensation (RAGE PRO only)

1.3.3 mach64LB (RAGE LT-PRO)

The mach64LB (commonly known as the RAGE LT-PRO) provides the mach64GT core
hardware support for 3D operations. The RAGE LT-PRO includes all mach64GT features
with the addition of:
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-15

mach64CT Family
• integrates TV-Encoder, LVDS, and Dual CRT Controllers

• low graphics subsystem power

1.3.4 mach64GM (RAGE XL)

The mach64GM (commonly known as the RAGE XL) provides the mach64GT core
hardware support for 3D operations. The RAGE XL includes all mach64GT features with
the addition of:

• integrated TMDS for flat panels

• integrates motion compensation

1.3.5 mach64LM (RAGE MOBILITY M/P/ M1)

The mach64LM (commonly known as the RAGE MOBILITY) provides the mach64GT
core hardware support for 3D operations. The RAGE MOBILITY includes all mach64GT
features with the addition of:

• very low graphics subsystem power

• integrates TV-Encoder, LVDS, and Dual CRT Controllers

• TMDS LCD Panel Support

• hardware DVD decode via integrated iDCT
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-16 Proprietary and Confidential

Features
1.4 Features

1.4.1 mach64 Major Features

• Full draw capability at 1, 4, 8, 15, 16, and 32 bits per pixel color resolutions.
Hardware-assisted draw functions are available for packed 24 bits per pixel draw
modes.

• Standard spatial resolution of 640x480, 800x600, 1024x768, and 1280x1024. Other
resolutions with pixel clocks of up to 220 MHz can be supported, limited only by the
DAC, memory size, and memory bandwidth.

• Full read/writable memory-mapped registers.

• Up to 8MB of memory (16 for 3D RAGE PRO).

• 32x32 command FIFO.

• Four-color (two fixed colors, complement, and transparent) hardware cursor of size
up to 64x64.

• Overscan.

• Linear frame buffer is locatable on 16MB boundaries anywhere in a 4GB system
memory address space.

• Paged frame buffer with two 32KB pages (independent read and write pages), pagable
on 32KB boundaries anywhere in the 8MB video memory address space.

• Draw functions include rectangle fill, line draw, bitblt, polygon boundary lines, and
polygon fill.

• Generalized 2D patterns with rotation.

• A linear memory mode for efficient memory management.

• Efficient monochrome expansion.

• Bit masking and scissoring capabilities.

• Seventeen-function ALU for full suite of logical ROPs.

• Source compare logic suitable for transparent blits.

• Destination compare logic suitable for alpha channel mixing.

• Scrolling and panning on a virtual desktop.

• Big endian support (mach64GX-E/F, mach64CT Family).

• EEPROM hardware support for non-volatile storage. (Certain controllers are
EEPROM-less.)

• Four-level hardware Display Power Management System (DPMS) mode support.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-17

Features
• DAC power-down support.

• Diagnostic test modes.

1.4.2 Functional Enhancements Relative To mach32

• Full draw capability in 1 bpp and 32 bpp modes, and hardware assist in packed 24 bpp
mode has been added.

• Full 32-bit registers. Some register pairs may be written in a single 32-bit write.

• Device coordinates have been expanded from –4096 to +4095 in the X direction, and
from –16384 to +16383 in the Y direction.

• Bresenham parameters have been expanded from 12 bits to 18 bits.

• Packed monochrome expansion.

• The paged frame buffer is now pagable on 32KB boundaries instead of 64KB.

• The source trajectory types, strictly-linear, general-pattern, and
general-pattern-with-rotation, have been added.

• Source compare.

• Four-level hardware Display Power Management System (DPMS) mode support.

• DAC power-down support.

• Diagnostic test modes.

1.4.3 Deletions Relative To mach32

• Point-to-point line draw.

• Line clip exception handling.

• VNIB and VPIX type rectangles.

• Short-stroke vectors.

• Scan line draw.

• Four compare functions.

• Bounds accumulators.

• CRTC shadow sets.

• Host reads; screen-to-host transfers can still be accomplished by aperture reads.

• Degree mode lines; Bresenham lines are still supported.

All the deleted functions listed above are redundant and may still be accomplished
by other means.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-18 Proprietary and Confidential

Overview of the Manual
1.4.4 Functional Differences From mach32

• Monochrome blits are now packed instead of sparse.

• Host writes are packed to 32 bits. The 1 bpp and 4 bpp modes may be optionally
aligned to a byte.

• Pixel consumption order from the host data register is only programmable in 1 bpp
and 4 bpp modes.

• Polygon fills are always inclusive on both edges and optionally right edge exclusive
on the mach64CT.

• Polygons derive their boundary data from an implicit polygon source instead of an
explicit monochrome source.

• Rectangular trajectories are specified in width and height instead of start and end.

• The ALU carry chain mask is set explicitly instead of implicitly from the pixel depth.

• Line drawing options do not affect rectangular trajectories and rectangle options do
not affect line drawing trajectories.

• Destination side effects (tiling) are now programmable.

• Source pointer always returns to the original SRC_X, SRC_Y position after draw
completion.

• Pixel depths, pitches and offsets are independently specified for CRTC, source,
destination, and host.

• Bresenham parameters have been expanded from 12 bits to 18 bits.

1.5 Overview of the Manual

1.5.1 Chapter-By-Chapter Summary

Chapters 1 to 7 cover the general functionality that is available in all variants of the
mach64. In Chapter 8, the specific details of each particular variant will be covered in
depth.

Chapter 2 provides details of the features and basic programming model of the mach64.

Chapter 3 demonstrates the fundamental steps that are necessary to use the mach64 in
accelerator mode. Issues such as card detection and setting a display mode are covered
here. Programming considerations are also discussed.

Chapter 4 covers the usage of the linear aperture, which provides immediate benefit to
programs as they no longer have to deal with bank switching and the 64KB page limit.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-19

Overview of the Manual
Chapter 5 goes into issues covering the accelerator engine itself, such as the command
FIFO queue and engine initialization.

Chapter 6 discusses general engine operation, and provides numerous examples of
standard engine operations.

Chapter 7 contains some advanced topics that highlight some of the special features and
capabilities of the mach64.

Chapter 8 covers some other advanced topics specific to the VT and 3D RAGE, including
use of the hardware overlay/scaler, the front end scaler of the 3D RAGE, and the bus
mastering capabilities of the 3D RAGE PRO

1.5.2 Notations And Conventions Used In This Manual

Mnemonics are used throughout this manual in place of hardware register names. The
naming conventions for registers and/or bit fields within a register are as follows:

• Register_Mnemonic

• Register_Mnemonic[Bit_Numbers]

• Field_Name@Register_Mnemonic

The following example is the mnemonic for the Configuration Chip ID register:

CONFIG_CHIP_ID

Continuing the above example, the Product Type Code field within the above register
occupies bit positions 0 through 15. The examples below describe this field in two ways:

CONFIG_CHIP_ID[15:0]

CONFIG_CHIP_TYPE@CONFIG_CHIP_ID

The second convention will be the preferred one, with the first convention used mostly for
describing unnamed fields.

Hexadecimal numbers will either be prefixed with “0x” (C-style) or appended with “h”
(Intel assembly-style). Binary numbers will be appended with “b”. All other numbers are
in decimal.

Sample code and functions will be typeset in a courier font.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-20 Proprietary and Confidential

Overview of the Manual
Sample Code Example

// Sample Function

void Sample_function (void)

{

 printf ("This is a sample function\n");

} // Sample_function.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 1-21

Overview of the Manual
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
1-22 Proprietary and Confidential

Chapter 2
Using the mach64

2.1 Introduction
This chapter discusses the functionality of the mach64. The capabilities and features of the
mach64 are also summarized.

2.2 Intel Based Architecture

This section focuses on the features and services that are available on systems that have
Intel and Intel-compatible CPUs as well as those systems that can emulate Intel CPUs.

2.2.1 Memory Map

The mach64 requires a memory aperture so that an application can access the frame buffer
and the memory mapped registers. Normally, this aperture is located somewhere within
the 4GB address space where it does not conflict with system (host) memory. Further, this
aperture must be located on a 4MB, an 8MB, or a 16MB boundary, depending upon the
particular mach64 chip and configuration. The following diagram illustrates a typical
memory organization for a mach64 board with 4MB of display memory installed on
system with 16MB of main memory:
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 2-1

Intel Based Architecture
Figure 2-1. Aperture Within Host Address Space (PC-compatible)

2.2.2 BIOS Services

The BIOS Services provide a straightforward way of setting up and using the mach64. The
BIOS Services also provide a way of querying the mach64 hardware in order to determine
its capabilities.

VGA modes are initialized with the standard INT 10h interface as described in the
mach64 Register Reference Guide. For further information on using standard VGA BIOS
Services, see Programmer's Guide to the EGA, VGA, and Super VGA Cards, by Richard
Ferraro.

For accelerator BIOS services, either INT 10h (AH=A0h) or a far call to the ROM can be
used. The key services that are provided include loading and setting a display mode, and
the BIOS query functions. See Appendix A, BIOS Services for a complete definition of all
accelerator BIOS services.

Typical Organization Of mach64 Aperture Within Host Address Space

System BIOS

mach64 BIOS

mach64 Aperture

System Memory

System Memory

Memory Mapped Regs

Big-endian Aperture

Frame Buffer

Conventional Memory

VGA Aperture

FFFFh:FFFFh
E000h:0000h
C800h:0000h
C000h:0000h

A000h:0000h

0000h:0000h0MB

1MB

16MB (varies)

Aperture Base

Aperture Base + 16MB

4GB

Offset 0MB

Offset 4MB

Offset 8MB - 1KB
Offset 8MB

Offset 16MB

Aperture Base address can be located anywhere in the shaded region
and is aligned to a multiple of 16MB

 (PC-compatible)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
2-2 Proprietary and Confidential

Intel Based Architecture
2.2.3 Registers

All of the mach64 accelerator engine functions are performed through the use of the
registers. There are 6 classes of registers that are available:

• VGA Registers are completely segregated from the accelerator registers. Their
functions are mutually exclusive. They are addressed at I/O ports 3B0h-3BFh,
3C0h-3CFh, and 3D0h-3DFh. These are the registers that are provided for
compatibility with the IBM VGA Display Adapter. Note that the ATI VGA extended
registers at 1CEh-1CFh are only available on the mach64GX family in standard
(non-relocatable) I/O mode. (See mach64 Register Reference Guide for more details.)

• Setup and Control Registers are usually initialized only once during boot time and
are used for basic configuration of the mach64 hardware and to report back hardware
capabilities. The mach64 diagnostic registers are also included in this category.

• Accelerator CRTC and DAC registers are used to program the resolution, refresh
rate, and pixel depth of the display mode, and to provide hardware cursor services.

• Draw Engine Control Registers are used for manipulating mach64 draw engine in
terms of general data path setup and control.

• Draw Engine Trajectory Control Registers are used to set up and control specific
engine drawing operations.

• Host Bus Dependent Registers are used for bus-specific information.

Registers must be accessed in order to be useful to the programmer. Most registers are
memory mapped. Others are I/O mapped. Some are both. In general, the VGA registers
are I/O mapped only, the mach64 Draw Engine registers are memory mapped only, and
the rest of the registers are both I/O and memory mapped. See mach64 Register Reference
Guide for specifics and exceptions. The following sections demonstrate how to access
these registers.

2.2.3.2 Memory Mapping
All registers not associated with the draw engine are I/O mapped, and all have memory
mapped register aliases (except for CONFIG_CNTL on mach64GX-C/D). All registers
are 32 bits wide, except for DAC_REGS, which are 4x8 bit registers. All draw engine
registers are memory mapped with DWORD offsets greater than or equal to 40h.

• If the small apertures are enabled, the memory mapped registers may be accessed
through a 1KB area at a segment:offset of B000h:FC00h.

• If the big aperture is enabled, the memory mapped registers occupy the address space
located at the base address of the aperture, plus an offset of 3FFC00h for a 4MB
aperture, or 7FFC00h for an 8MB aperture configuration. A method of accessing
extended memory is required to access the registers at this location.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 2-3

Intel Based Architecture
On the mach64GX family, memory mapped registers may be read from and written to in
8-bit, 16-bit and 32-bit quantities.

On the mach64CT family, writes to the memory mapped registers must be performed in
one 32-bit write. The memory mapped registers on the mach64CT family may be read in
the same manner as on the mach64GX family.

Referring to the mach64 Register Reference Guide, the DWORD Offset or Memory Map
(MM) select is given to describe the register’s address. If access through the small
apertures is desired, the physical address can be determined by the following equation:

physical memory address = (MM select << 2) + B000h:FC00h

For example, if the MM select = 21h (SCRATCH_REG1), the physical address would be
B000h:FC84h.

If the big aperture is enabled, the equation becomes:

physical memory address = (MM select << 2) + aperture base +

+ memmap offset

where memmap offset is either 3FFC00h or 7FFC00h. Using the example above, if the
aperture base address is A0000000h, the aperture size is 8MB (offset 7FFC00h) and the
MM select = 21h (SCRATCH_REG1), the physical memory address would be
A07FFC84h.

For some registers, it is necessary to access individual bytes within the 32-bit register
(such as DAC_REGS). The MM select must be converted to a byte offset before adding
the individual byte offset (0, 1, 2, or 3). For example, to access the DAC_MASK byte of
DAC_REGS through the small aperture the equation is:

For the big aperture, the equation is:

byte offset = MM select << 2 = 30h << 2 = 00C0h (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)

physical memory address = byte offset + individual byte offset +
 B000h:FC00h

= 00C0h + 2 + B000h:FC00h = B000h:FCC2h

byte offset = MMselect << 2 = 30h << 2 = C0h (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
2-4 Proprietary and Confidential

Intel Based Architecture
2.2.3.3 I/O Mapping
Since the I/O base address may be different depending on the card configuration, it cannot
be assumed to be a specific value. The easiest way to obtain the I/O base address is to call
mach64 BIOS function 12h (see Appendix A, BIOS Services for more information). The
BIOS services can be called in two ways: FAR CALL or INT 10h (it is recommended that
the INT 10h method be used).

This function also returns the I/O base address type -- standard or relocatable. If it is
standard, the I/O base address will typically be 2ECh. If it is relocatable (only on PCI), the
I/O base address can be any value within a 64KB I/O space. The value is decided by the
system to insure that no conflicts exist and is in accord with the “plug and play”
specification of a PCI system.

In order to use the FAR CALL method, the mach64 ROM segment is required. The ROM
segment for a mach64 card with the VGA enabled is always at C000h and is normally
32KB in size. To access the BIOS services in the ROM, the offset must be set to 64h. If
the VGA is disabled, the ROM segment is usually at C000h or C800h but can be located at
other segments. A VGA disabled ROM size is 2KB to 8KB.

Referring to the mach64 Register Reference Guide, the I/O select is given to describe the
register’s address. The physical address can be determined by the following equation:

physical I/O address = (I/O select << 10) + I/O base address

For example, if the I/O base address = 2ECh and the I/O select = 11h
(SCRATCH_REG1), the physical I/O address would be 46ECh.

If the relocatable feature is enabled (PCI only), the DWORD Offset or Memory Map
(MM) select is used to describe the register's address. For this case, the equation becomes:

physical I/O address = (MM select << 2) + I/O base address

Using the example above, if the I/O base address = E000h and the MM select = 21h
(SCRATCH_REG1), the physical I/O address would be E084h.

For some I/O registers, it is necessary to access individual bytes within the 32-bit register
(such as DAC_REGS). The I/O select or MM select must be converted to a byte offset
before adding the individual byte offset (0, 1, 2, or 3).

aperture base = A0000000h

memmap offset (8MB) = 7FFC00h

physical memory address = byte offset + individual byte offset +
 aperture base + memmap offset

= C0h + 2 + A0000000h + 7FFC00h = A07FFCC2h
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 2-5

Non-Intel Based Architecture
For example, to access the DAC_MASK byte of DAC_REGS, the equation is:

For relocatable I/O, the equation is:

2.3 Non-Intel Based Architecture
This section will focus on the features and services that are available on systems that
cannot fully emulate Intel CPUs (such as the Apple Power Macintosh).

Note that the mach64GX-C/D cannot be used in non-Intel environments. Also, non-Intel
platforms must conform to the PCI specification. Thus this section is restricted to PCI
versions of the mach64GX-E/F and the mach64CT family.

2.3.1 Memory Map

The mach64 requires a memory aperture so that an application can access the frame buffer
and the memory mapped registers. Normally, this aperture is located somewhere within
the 4GB address space where it does not conflict with system (host) memory. Further, this
aperture must be located on a 16MB boundary. The little endian aperture is located at
offset 0MB of this aperture space, while the big endian aperture is located at offset 8MB
The following diagram illustrates a typical memory organization for a mach64 board with
4MB of display memory installed:

byte offset = I/O select << 10 = 17h << 10 = 5C00h (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)

I/O base address = 2ECh

physical I/O address = byte offset + individual byte offset + I/O base
 address

= 5C00h + 2 + 2ECh = 5EEEh

byte offset = MMselect << 2 = 30h << 2 = C0h (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)

I/O base address = E000h

physical I/O address = byte offset + individual byte offset +
 I/O base address

= C0h + 2 + E000h = E0C2h
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
2-6 Proprietary and Confidential

Non-Intel Based Architecture
Figure 2-4. Aperture Within Host Address Space (non-Intel)

2.3.2 BIOS Services

BIOS Services are unavailable on non-Intel platforms. The BIOS is typically replaced
with a ROM that conforms to the IEEE OpenBoot specification. Upon system powerup,
the ROM will initialize the mach64 board to a known state. The ROM image will
disappear at the end of the boot process. All further access to the mach64 must be done via
the memory mapped registers. Setting modes, for example, must be done manually.

2.3.3 Registers

The VGA registers are normally not available, unless the non-Intel platform in question
contains hardware support for an I/O address space that is distinct from Memory address
space.

All registers are memory mapped and are 32 bits wide, except for DAC_REGS, which are
4x8 bit registers.

• If the small apertures are enabled, the memory mapped registers may be accessed

Typical Organization Of mach64 Aperture Within Host Address Space (non-Intel)

mach64 Aperture

Memory Mapped Regs

Big-endian

0MB

Aperture Base

Aperture Base + 16MB

4GB

Offset 0MB

Offset 4MB

Offset 8MB - 1KB

Offset 8MB

Offset 16MB

Aperture Base address can be located anywhere in the shaded region
and is aligned to a multiple of 16MB

Frame Buffer

Little-endian
Frame Buffer

Little-endian
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 2-7

Non-Intel Based Architecture
through a 1KB area at a linear address 0x000BFC00.

• If the big aperture is enabled, the memory mapped registers occupy the address space
located at the base address of the aperture, plus an offset of 0x003FFC00 for a 4MB
aperture, or 0x007FFC00 for an 8MB aperture configuration. A method of accessing
extended memory is required to access the registers at this location.

On the mach64GX family, memory mapped registers may be read from and written to in
8-bit, 16-bit and 32-bit quantities.

On the mach64CT family, writes to the memory mapped registers must be performed in
one 32-bit write. The memory mapped registers on the mach64CT family may be read in
the same manner as on the mach64GX family.

Referring to the mach64 Register Reference Guide, the DWORD Offset or Memory Map
(MM) select is given to describe the register’s address. If access through the small
apertures is desired, the physical address can be determined by the following equation:

physical memory address = (MM select << 2) + 0x000BFC00

For example, if the MM select = 0x21 (SCRATCH_REG1), the physical address would be
0x000BFC84.

If the big aperture is enabled, the equation becomes:

physical memory address = (MM select << 2) + aperture base +

+ memmap offset

where memmap offset is either 0x003FFC00 or 0x007FFC00. Using the example above,
if the aperture base address is 0xA0000000, the aperture size is 8MB (offset 0x007FFC00)
and the MM select = 0x21 (SCRATCH_REG1), the physical memory address would be
0xA07FFC84.

For some registers, it is necessary to access individual bytes within the 32-bit register
(such as DAC_REGS). The MM select must be converted to a byte offset before adding
the individual byte offset (0, 1, 2, or 3). For example, to access the DAC_MASK byte of
DAC_REGS through the small aperture the equation is:

byte offset = MM select << 2 = 0x30 << 2 = 0xC0 (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)

physical memory address = byte offset + individual byte offset +
 0x000BFC00

= 0xC0 + 2 + 0x000BFC00 = 0x000BFCC2
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
2-8 Proprietary and Confidential

Non-Intel Based Architecture
For the big aperture, the equation is:

I/O mapped registers may not be available on non-Intel platforms as this method of
register access implicitly assumes Intel-style I/O port addressing capability. If I/O mapped
registers are available, see section 2.2.3.3 for information on how to access these ports.

byte offset = MMselect << 2 = 0x30 << 2 = 0xC0 (DAC_REGS)

individual byte offset = 2 (DAC_MASK byte)

aperture base = 0xA0000000

memmap offset (8MB) = 0x007FFC00

physical memory address = byte offset + individual byte offset +
 aperture base + memmap offset

= 0xC0 + 2 + 0xA0000000 + 0x007FFC00
= 0xA07FFCC2
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 2-9

Non-Intel Based Architecture
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
2-10 Proprietary and Confidential

Chapter 3
Getting Started

3.1 Introduction
This chapter discusses the basics of using the mach64 and covers detection of the mach64
and setting up a display mode.

3.2 Before you start

Before programming the mach64 there are several issues that should be discussed as they
will determine how the mach64 will be used on the desired platform. These issues are
discussed below.

3.2.1 Accelerator vs. VGA

The mach64 has two distinct operating modes:

• VGA mode

• Accelerator mode

For more information on standard VGA programming, please refer to any of the texts that
are mentioned in the Bibliography such as Programmer’s Guide to the EGA, VGA, and
Super VGA Cards, by Richard F. Ferraro.

Note that the mach64 also supports the VESA VBE 1.2 programming interface. This
interface was created by the Video Electronic Standards Association (VESA) to provide a
standardized method for using SuperVGA display modes on non-accelerated hardware.
Effectively, VBE 1.2 folded in VGA support for common high resolution modes such as
1024x768 with 256 colors. Contact VESA for further information on VBE.

The accelerator provides the ability to draw into screen memory concurrently with the
operation of the host CPU. In accelerator mode, there are two ways of accessing the
graphics memory:

• Memory aperture

• Draw engine

The host application may read or write screen memory directly through a memory
aperture (an aperture is an address space that maps directly to on-board memory).

Accesses through the aperture provide no acceleration, and the speed of these accesses is
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 3-1

Before you start
generally bound by the speed of the host expansion bus.

The second way of accessing the memory is to use the draw engine to write to it. The draw
engine can do two things:

• Rectangle fills

• Lines

These are known as destination trajectories (a trajectory defines a path through
graphics memory which the draw engine reads or writes data). These trajectories may be
filled with pixel data from various sources. If the source data comes from graphics
memory, this is called a bitblt (or blit) and follows one of four different source
trajectories.

A more detailed description of trajectories can be found in section 6.1.3: Trajectories.

3.2.2 Linear Aperture vs. VGA Aperture

Memory on the mach64 may be directly accessed in one of three ways:

• Standard paged 64KB VGA aperture

• Small dual paged apertures

• Big aperture

Note that it is completely legitimate to have all three apertures simultaneously accessing
framebuffer memory, but if the Big linear aperture is active there is typically no need to
access memory through either the VGA or the small apertures.

3.2.2.1 Standard Paged 64KB VGA Aperture
If the VGA is enabled and the mach64 is in VGA mode, memory may be accessed through
the standard paged 64KB VGA aperture. The segment base address of this aperture is
either A000h or B000h depending on the video mode.

The mach64GX family also use this aperture to access the lower 1MB of memory in
planar (16 color) SVGA modes. The ATI VGA extended registers are used to select the
64KB read or write page mapped to the aperture space. As the mach64CT family do not
contain the VGA extended register set, the small dual paged apertures described in the
next section are used to access video memory. Any memory writes via the VGA aperture
are inhibited when the memory boundary is enabled.

For more information on how to page the 64KB aperture, see the mach64 Register
Reference Guide.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
3-2 Proprietary and Confidential

Before you start
3.2.2.2 Small Dual Paged Apertures
If the mach64 is in an accelerator mode or a SVGA packed pixel mode, two small 32KB
apertures may be enabled at segment base addresses A000h and A800h. The read and
write pages are set independently on 32KB boundaries for each of the two apertures with
the MEM_VGA_WP_SEL and MEM_VGA_RP_SEL registers. This aperture mode is a
type of VGA aperture configuration that is not available in standard VGA modes. If the
memory boundary is enabled, writes to these apertures are inhibited.

• These small apertures can access the full 8MB.

• These small apertures may be enabled only if the VGA is enabled on the chip;
otherwise, a memory address conflict would exist between the accelerator and the
existing VGA.

Some special initialization is required to enable the small apertures and the memory
mapped registers in the VGA address space:

• The VGA must be put into packed pixel mode.

• The VGA must have a 128KB aperture enabled if both the small apertures and the
memory mapped registers are addressed.

• The bit CFG_MEM_VGA_AP_EN@CONFIG_CNTL must be set.

If access to the VGA memory mapped registers is not required, the setting of
CFG_MEM_VGA_AP_EN@CONFIG_CNTL is not necessary.

Because the small aperture page size is 32KB, programs which assume the page size to be
64KB need to double the page number within their page setting routine. When selecting
the write page, for instance, the doubled page number must be written to
MEM_VGA_WPS0@MEM_VGA_WP_SEL to set the page number for the first 32KB
aperture. This value plus one must then be written to
MEM_VGA_WPS1@MEM_VGA_WP_SEL to set the page number for the second 32KB
aperture. A similar process may be used to set the read page in the MEM_VGA_RP_SEL
register. In this way, programs which assume a page size of 64KB can use the small
apertures transparently.

The ATI VGA extended registers are used to change the display page in the mach64GX
family. Because the mach64CT family does not include the VGA extended register set,
they must use the small aperture to change the read or write page.

3.2.2.3 Big Aperture
If the mach64 is in accelerator mode, a big linear aperture may be enabled to access the
entire frame buffer. The size and location of the aperture depends on the mach64 variant.
For example, on the mach64GX-C/D, the aperture size may be set to 4MB or 8MB and
require an 8MB boundary for the aperture location. The mach64GX-E/F and the
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 3-3

Before you start
mach64CT family always require a 16MB boundary since enabling the big linear aperture
also enables the 8MB big endian aperture (the big endian aperture starts at the standard
linear aperture address plus 8MB). The mach64GX-E/F do allow 4MB or 8MB aperture
sizing whereas the mach64CT family allows only an 8MB sized aperture. To produce
code that works across all mach64 variants, it is recommended that the aperture size be set
to 8MB and located on a 16MB boundary.

The availability of this aperture is assured on all board configurations except ISA bus
configurations. On an ISA system, the following two conditions must be met in order to
use the big aperture:

• The aperture must fit within a 16MB address space.

• The aperture must not overlap host CPU memory.

An ISA system with greater than 12MB of host CPU memory cannot use a big aperture.

3.2.3 Protected Mode vs. Real Mode

Writing to and reading from the linear aperture can be done in several ways. Since the
linear aperture is located in the “extended memory” space, a real mode application must
use the extended memory services to access memory through the linear aperture. There are
several services available:

• System BIOS INT 15h, function 87h.

• DOS Protected Mode Interface (DPMI).

• Virtual Control Program Interface (VCPI).

The last two points mentioned require protected mode memory managers that support
these services. The first point mentioned will typically be available since it is supported by
the system BIOS. This method is also the slowest and is not practical for performance
applications. It should be noted that EMS (Expanded Memory Services) and XMS
(eXtended Memory Services) are not practical for accessing graphics frame buffers.

If the application is in protected mode, the linear aperture can be accessed easily with
virtually no overhead.

Before attempting to access the big aperture, the host application must enable it with
BIOS services function 5 or by writing to the CONFIG_CNTL register. (See Appendix A,
BIOS Services for more details.)

 Given the restrictions imposed on using the linear aperture on ISA systems, it
is recommended that the VGA dual paged aperture be used for ISA systems.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
3-4 Proprietary and Confidential

mach64 Detection
3.3 mach64 Detection

There are several steps that are required in order to properly detect the mach64. Some of
these steps may need to be performed differently on a non-Intel platform or if the BIOS is
unavailable. The key steps to detection are:

1. Detect mach64 signatures.

2. Determining I/O base address.

3. Read/Write tests.

4. Determining specific mach64 variant.

3.3.1 Card Detection

Find an ATI mach64 ROM and its ROM segment by scanning through ROM segments
C000h – FE00h, in 2KB steps. To match, the ROM ID, ATI product signature, and
mach64 product string must be found:

ROM ID = AA55h (PC compatibles)
ATI product signature = “761295520”
mach64 string2 = “MACH64”
mach64 string1 = “GXCX” (older ROMs)

The ROM ID bytes will occur as the first two bytes in the segment. The ATI product
signature will occur somewhere within the first 256 bytes of the segment and will identify
the ROM as belonging to an ATI display adapter. One of the mach64 strings will occur
somewhere within the first 1024 bytes of the segment and will identify the ROM as
belonging to a mach64-based product.

Only one the mach64 strings will be present in a mach64 ROM. Therefore, the ROM
should be searched for string1 first. If it is not present, string2 should be searched for. If it
is also not present, a mach64 ROM is not present.

For non-Intel platforms, access to the PCI configuration space is required. Scan for a PCI
card with a VendorID of 0x1002. This number is ATI’s VendorID as registered with the
PCI Special Interest Group, and all PCI-based products manufactured by ATI will have
this VendorID. Once found, scan for the following DeviceID codes to identify a mach64:
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 3-5

mach64 Detection
On all systems that support multiple mach64 cards installed the above procedure should
be repeated until all mach64 images have been located.

3.3.2 I/O Base

Call the ROM (BIOS service 12h) to find the I/O base address and type
(standard/relocatable). The CX register should be preloaded with zero before calling this
BIOS function. This insures that CX is zero on return for older ROMs.

Table 3-1 PCI DeviceID Codes

mach64 PCI DeviceID Codes
Variant DeviceID

mach64GX 0x4758

mach64CX 0x4358

mach64CT 0x4354

mach64VT 0x5654

mach64VTB 0x5655

mach64VT4 0x5656

3D RAGE PCI DeviceID Codes
Variant DeviceID

3D RAGE (GT) 0x4754

3D RAGE II+ (GTB) 0x4755

3D RAGE IIC (PQFP, AGP) 0x475A

3D RAGE IIC (BGA, AGP) 0x4757

3D RAGE IIC (PQFP, PCI) 0x4756

3D RAGE PRO (BGA, AGP) 0x4742

3D RAGE PRO (BGA, AGP, 1X ONLY) 0x4744

3D RAGE PRO (BGA, PCI) 0x4749

3D RAGE PRO (PQFP, PCI) 0x4750

3D RAGE PRO (PQFP, limited 3D) 0x4751

3D RAGE LT PRO (BGA, PCI) 0x4C49

3D RAGE LT PRO (BGA, AGP) 0x4C42

3D RAGE LT PRO 0x4C50

3D RAGE LT 0x4C47

RAGE XL (BGA, AGP) 0x474D

RAGE MOBILITY (M1, M, P, AGP, PCI) 0x4C4D
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
3-6 Proprietary and Confidential

Mode Switching
Standard (also known as Fixed or Sparse) I/O is the only I/O type available on ISA and
VLB mach64 boards. The lower 10 bits of the I/O port address are fixed and set to 0x2EC
and the upper 6 bits are used to index the various mach64 registers. Relocatable (also
known as Block) I/O is available on PCI mach64 boards with the exception of the
mach64GX-C/D. The I/O base can be anywhere within the 64KB I/O address space and
will occupy 256 consecutive registers.

For non-Intel platforms, the Base Addresses section of the PCI configuration space will
indicate what the I/O base address is.

3.3.3 Read/Write Test

Perform a write/read test on SCRATCH_REG1 (its contents must be saved and restored
since they are used by the BIOS services). This is done by writing the 32-bit value
55555555h to SCRATCH_REG1 and then reading it back. If the value is different, a
mach64 is not present. If the value is the same, repeat this test with AAAAAAAAh.
Ensure that the register's contents are restored.

3.3.4 CONFIG_CHIP_ID

Read the CONFIG_CHIP_ID register for additional information such as the chip type,
class, and revision.

Additional configuration information can be obtained with a BIOS query call (functions 6,
7, 8, 9, and Ah). (See Appendix A, BIOS Services for more information.).

3.4 Mode Switching
It is highly recommended that all mode switching be done by a BIOS service function call
rather than by manually setting the CRT controller (CRTC). The main reasons for doing
this are:

• Simplicity.

• The characteristics of the non-volatile storage device that stores mode and monitor
information may not be known. Without monitor information, the only mode
guaranteed to work on all analog monitors is 640x480 at 60 Hz non-interlaced.

• CRTC compatibility with future devices is not guaranteed.

On mach64GX family, there are separate CRTCs for the VGA and accelerator. The CRTC
parameters may be set independently. On mach64CT family, both the VGA and
accelerator share the same CRTC and therefore they cannot be set independently. For all
mach64 chips, the BIOS can be used to switch between VGA and accelerator modes.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 3-7

Mode Switching
The following table lists the VESA VBE modes that may be available on the mach64.
These modes are set with the standard VESA VBE set mode call (INT 10h, AX=4F02h,
BX=mode). Consult the VBE specification for further details.

Table 3-2 VESA Compatible Mode Support

VESA VBE 1.2 Compatible Mode Support for mach64
Mode number Resolution Pixel Depth Memory Used

10Dh 320x200 15 125KB

10Eh 320x200 16 125KB

10Fh 320x200 24 188KB

100h 640x400 8 250KB

101h 640x480 8 300KB

103h 800x600 8 469KB

105h 1024x768 8 768KB

107h 1280x1024 8 1280KB

110h 640x480 15 600KB

111h 640x480 16 600KB

112h 640x480 24 900KB

113h 800x600 15 938KB

114h 800x600 16 938KB

115h 800x600 24 1407KB

116h 1024x768 15 1536KB

117h 1024x768 16 1536KB

118h 1024x768 24 2304KB

119h 1280x1024 15 2560KB

11Ah 1280x1024 16 2560KB

11Bh 1280x1024 24 3840KB
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
3-8 Proprietary and Confidential

Mode Switching
The following table lists the modes that are available on the mach64 when in accelerator
mode. These modes are set through the mach64 BIOS. See Appendix A: BIOS Services for
details.

Note that the availability of each mode depends upon the amount of memory and the type
of DAC that is on board, and that not all modes may be available on all mach64 boards.

3.4.1 BIOS Interface

VGA modes are initialized with the standard INT 10h interface as described in the
mach64 VGA Register Guide.

For accelerator BIOS services, either INT 10h (AH=A0h) or a far call to the ROM can be
used. Since the ROM segment is determined during card detection, it will be available for

Table 3-3 Accelerator Modes

mach64 Accelerator Modes
Resolution Pixel Depth Memory Used

640x480 8 300KB

640x480 15/16 600KB

640x480 24 900KB

640x480 32 1200KB

800x600 8 469KB

800x600 15/16 938KB

800x600 24 1407KB

800x600 32 1875KB

1024x768 8 768KB

1024x768 15/16 1536KB

1024x768 24 2304KB

1024x768 32 3072KB

1280x1024 8 1280KB

1280x1024 15/16 2560KB

1280x1024 24 3840KB

1280x1024 32 5120KB

1600x1200 8 1875KB

1600x1200 15/16 3750KB

1600x1200 24 5625KB

1600x1200 32 7500KB
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 3-9

Mode Switching
ROM calls. If the I/O base address is known, it can also be retrieved from
SCRATCH_REG1 using the following calculation:

segment = (SCRATCH_REG1 & 0x7F) * 0x80 + 0xC000

The offset used for the call is always 64h. See Appendix A, BIOS Services for a complete
definition of all accelerator BIOS services. In particular, BIOS Service 02h (Load and Set
Mode) is the main function that is called when setting a mode. The following example
shows how to set an accelerator mode using both methods:

FAR CALL Method

; Data for FAR CALL

romAddr dw 64h

dw 0c000h

; Set a 1024x768 8 bpp accelerator mode using the FAR CALL method.

mov ax, 2 ; BIOS service 2 (load and set

 mode)

mov ch, 55h ; resolution = 1024x768

mov cl, 82h ; pitch = X resolution, 8 bpp

mov romAddr, 64h ; offset of ROM call address

mov romAddr+2, romseg ; segment of ROM call address

call DWORD PTR romAddr ; call BIOS service

INT 10h Method

; Set a 1024x768 8 bpp accelerator mode using the INT 10h method.

mov ax, 0a002h ; BIOS service 2 (load and set

 mode)

; -- note value of AH

mov ch, 55h ; resolution = 1024x768

mov cl, 82h ; pitch = X resolution, 8 bpp

int 10h ; call BIOS service

3.4.2 Manual Mode Switching and Custom CRT Modes

Mode switching by manual means is not recommended. If for some reason this cannot be
avoided, refer to Chapter 7, Advanced Topics.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
3-10 Proprietary and Confidential

Chapter 4
Linear Aperture

4.1 Introduction
This chapter discusses the use of the linear apertures on the mach64. The apertures
provide a means to access all of framebuffer memory without resorting to bank switching.

The first and most obvious advantage of having a mach64 Display Adapter is the ability to
access the entire video memory as a linear frame buffer, regardless of the spatial
resolution and pixel depth. The Linear Frame Buffer is accessed via the Linear Aperture or
Big Aperture. Similar to the standard IBM VGA mode 13h, the Linear Frame Buffer
allows the programmer access to all points on the display without the impediment of
having to bank switch the standard 64KB VGA aperture. The mach64 allows for either a
4MB or an 8MB aperture, which is ample for all supported modes.

The following sections will outline all of the required steps to implement usage of the
Linear Frame Buffer.

4.2 Aperture Base Address

To use the linear aperture, the Base Linear Address and the size of the aperture must be
determined. The BIOS Query Services 06h and 09h provide a method for obtaining
aperture location and size. The Short Query Function call (06h) returns the aperture base
address, in megabytes, in the BX register, and the size of the aperture in the lower nybble
of AL. The Query Device call (09h) returns the entire Query Structure. The aperture base
address is located at offset 10h and the size is located at offset 12h of the Query Structure.

For non-Intel environments, the aperture base address can be found through the PCI
configuration space. Since the mach64GX-E/F and all members of the mach64CT family
do not support 4MB apertures, it can be safely assumed that the aperture size is 8MB for
these chips.

See next page for the example code.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 4-1

Convert Physical Address
Example code for Querying the BIOS for the Base Address and Limit

int apertureBaseMB, apertureSizeMB;

regs.h.ah = 0xA0; // mach64 BIOS call

regs.h.al = 0x06; // mach64 Service 06h: Short

// Query

int386 (0x10, ®s, ®s); // Call the Video BIOS

apertureBaseMB = regs.w.bx; // Save base address

apertureSizeMB = (regs.h.al & 0x1F) * 4;// Save aperture size

4.3 Convert Physical Address
After the base address has been obtained, it may be necessary to convert this address into a
format that the operating system can use. For example, under a DPMI DOS Extender
environment, the above physical address information must be converted into a linear
address (or logical address). DPMI service 0800h (Physical Address Mapping) will
perform this mapping. Continuing the above example we will have the following:

Example code for converting the address from physical to linear

regs.w.ax = 0x0800; // DPMI Service 0800h:

// Physical Addr Map

regs.w.bx = apertureBaseMB << 4; // Convert base address in

// megabytes

regs.w.cx = 0x0000; // into 32-bit address in

// BX:CX

regs.w.si = apertureSizeMB << 4; // Convert size in megabytes

regs.w.di = 0x0000; // into 32-bit value in SI:DI

int386 (0x31, ®s, ®s); // Call DPMI

Other operating environments may have to manually create a protected mode selector with
a selector base equal to the aperture base address and the selector limit equal to the
aperture size.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
4-2 Proprietary and Confidential

Enable the Aperture
4.4 Enable the Aperture

Once the aperture's location and size have been determined, the aperture should be
enabled in order to use it. BIOS service 05h (Memory Aperture Service) provides a
method for doing so.

Example code for enabling the aperture

regs.h.ah = 0xA0; // mach64 BIOS call

regs.h.al = 0x05; // mach64 Service 05h:

// Aperture Service

regs.h.cl = 0x01; // CL[0] = 1: Enable Linear

// Aperture

int386 (0x10, ®s, ®s); // Call the Video BIOS

4.5 Using the Linear Aperture
The organization of the linear aperture is similar to VGA mode 13h except that higher
resolutions and greater pixel depths are possible. Bank switching is not necessary.

4.5.1 Memory Organization Of Pixels

The draw engine directly supports pixel depths of 1, 4, 8, 15, 16, and 32 bits per pixel. The
only draw function supported in packed 24 bpp mode is rectangle fill. This mode is
actually an 8 bpp mode with special rotations done to the DP_FRGD_CLR,
DP_BKGD_CLR, DP_WRT_MASK, and 8x8x1 monochrome pattern registers.

The CRTC supports display pixel depths of 4 and 8 bpp pseudocolor, and 15, 16, 24, and
32 bpp direct color modes.

Note that the draw engine and CRTC must be configured with the same value of
BYTE_PIX_ORDER if 4 bpp mode is selected (see DP_PIX_WIDTH and
CRTC_GEN_CNTL in the mach64 Register Reference Guide).

Bit definitions of all pixel configurations are shown below in DWORD and BYTE
representations (this is the “little endian” representation). The ordinal values represent the
pixel ordering in memory for a left to right pixel trajectory beginning on a DWORD
boundary, i.e. the ordinal value ‘1’ represents the position in memory of the leftmost pixel
in the DWORD.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 4-3

Using the Linear Aperture
1 BPP, BYTE_PIX_ORDER = 0, Draw Engine Only
DWORD 19 1A 1B 1C 1D 1E 1F 20 11 12 13 14 15 16 17 18 9 A B C D E F 10 1 2 3 4 5 6 7 8

BYTE 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

1 BPP, BYTE_PIX_ORDER = 1, Draw Engine Only
DWORD 20 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D C B A 9 8 7 6 5 4 3 2 1

BYTE 8 7 6 5 4 3 2 1 10 F E D C B A 9 18 17 16 15 14 13 12 11 20 1F 1E 1D 1C 1B 1A 19

4 BPP Pseudocolor, BYTE_PIX_ORDER = 0
DWORD 7 8 5 6 3 4 1 2

BYTE 1 2 3 4 5 6 7 8

4 BPP Pseudocolor, BYTE_PIX_ORDER = 1
DWORD 8 7 6 5 4 3 2 1

BYTE 2 1 4 3 6 5 8 7

8 BPP Pseudocolor
DWORD 4 3 2 1

BYTE 1 2 3 4

15 BPP (aRGB 1555)
DWORD Pixel 2, aRRRRRGGGGGBBBBB Pixel 1, aRRRRRGGGGGBBBBB

BYTE P1 low, GGGBBBBB P1 high, aRRRRRGG P2 low, GGGBBBBB P2 high, aRRRRRGG

16 BPP (RGB 565)
DWORD Pixel 2, RRRRRGGGGGGBBBBB Pixel 1, RRRRRGGGGGGBBBBB

BYTE P1 low, GGGBBBBB P1 high, RRRRRGGG P2 low, GGGBBBBB P2 high, RRRRRGGG

24 BPP, Display only
B2 R1 G1 B1

DWORD G3 B3 R2 G2

R4 G4 B4 R3

B1 G1 R1 B2

BYTE G2 R2 B3 G3

R3 B4 G4 R4
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
4-4 Proprietary and Confidential

Complete Example of Using the Aperture
4.6 Complete Example of Using the Aperture
The following example is a full demonstration of aperture access.

Example On Using The Aperture

int apertureBaseMB, apertureSizeMB;

char *apertureLinearAddress;

// Assume that an accelerator mode (e.g. 640x480x8bpp) has

// been set up

// Call the BIOS to find the aperture

regs.h.ah = 0xA0; // mach64 BIOS call

regs.h.al = 0x06; // mach64 Service 06h: Short

// Query

int386 (0x10, ®s, ®s); // Call the Video BIOS

apertureBaseMB = regs.w.bx; // Save base address

apertureSizeMB = (regs.h.al & 0x1F) * 4;// Save aperture size

// Convert address returned by BIOS to linear address

regs.w.ax = 0x0800; // DPMI Service 0800h:

// Physical Addr Map

regs.w.bx = apertureBaseMB << 4; // Convert base address in

// megabytes

regs.w.cx = 0x0000; // into 32-bit address in

// BX:CX

regs.w.si = apertureSizeMB << 4; // Convert size in megabytes

regs.w.di = 0x0000; // into 32-bit value in SI:DI

int386 (0x31, ®s, ®s); // Call DPMI

32 BPP (RGBa 8888)
DWORD R G B a

BYTE a B G R

Note that 4 bpp is generally not supported any more. It was useful in planar
pixel mode and it allowed for 1280x1024 with only 1MB of RAM.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 4-5

VGA Interaction
// Linear Address is returned in BX:CX

apertureLinearAddress = (char *) ((regs.w.bx << 16L) +

regs.w.cx);

// Enable the aperture

regs.h.ah = 0xA0; // mach64 BIOS call

regs.h.al = 0x05; // mach64 Service 05h:

// Aperture Service

regs.h.cl = 0x01; // CL[0] = 1: Enable Linear

// Aperture

int386 (0x10, ®s, ®s); // Call the Video BIOS

// We can now directly access the aperture through

// apertureLinearAddress;

apertureLinearAddress[0] = 0xFF; // Change pixel in upper left

// corner

4.7 VGA Interaction

Remember that physical memory is shared between the on-chip VGA and the accelerator.
On the mach64GX family a logical boundary may be enabled with the MEM_CNTL
register to inhibit the two logical devices from accessing the other’s memory.

• When the memory boundary is disabled, each device (draw engine, VGA aperture
or small apertures) has full access to on-board memory.

• When the memory boundary is enabled, any memory accesses through the VGA
aperture or small apertures are inhibited. All draw engine functions that access the
memory below the boundary are inhibited. The boundary may be set to zero.
Remember to set all draw engine offsets above the memory boundary.

• Memory accesses through the big linear aperture are not affected by the memory
boundary register.

• If the application destroys VGA memory, the application must re-initialize the VGA
mode before exiting.

The memory boundary feature is not supported on the mach64CT.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
4-6 Proprietary and Confidential

Chapter 5
Engine Initialization

5.1 Introduction
This section covers the steps necessary to setup and use the mach64 accelerator engine.

5.2 Background Information on the mach64 Engine
The mach64 engine provides more efficiency in processing common drawing functions by
letting the (much faster) hardware do the work. However, it is impossible to hardwire
every facet of computer graphics into the accelerator, so some drawing functions may still
needs to be done by software.

5.2.1 Command FIFO Queue

All writes to draw engine registers are automatically routed through a 32-bit-wide,
16-entry-deep command FIFO. All entries are consumed in the same order as they are
written.

• Note that host data registers do not generate extra wait states as on the mach32, and
complete FIFO discipline is therefore required for these registers.

• Register reads are not FIFOed in any fashion.

• Register writes to registers with DWORD offsets less than 40h are not FIFOed.

5.2.1.1 Waiting For Sufficient FIFO Entries
Prior to any writes to any draw engine register, it is essential to check the state of the
command FIFO to ensure that enough FIFO entries are available. Failure to do so may
cause the draw engine to lock. C source code that waits for n free entries is shown below:

Example Code for Waiting for Sufficient Empty Entries in the Command FIFO

VOID WaitForFifo(short entries)

{

 while ((regr(FIFO_STAT) & 0xffff) >

 ((UNSIGNED INT)(0x8000 >> entries)));

}

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-1

Background Information on the mach64 Engine
5.2.1.2 Resetting The FIFO
If the FIFO has locked because of improper FIFO discipline, the FIFO and the draw
engine must be reset before continuing.

Example Code for Resetting the Command FIFO

VOID ResetEngine(VOID)

{

 // reset engine

 iow32(GEN_TEST_CNTL, (ior32 (GEN_TEST_CNTL) & 0xFFFFFEFF));

 // enable engine

 iow32(GEN_TEST_CNTL, (ior32 (GEN_TEST_CNTL) | 0x00000100));

 // ensure engine is not locked up by clearing any FIFO or

 // HOST errors

 iow32(BUS_CNTL, (ior32 (BUS_CNTL) | 0x00A00000));

}

5.2.1.3 Waiting For Draw Engine Idle
There are two cases where the application must wait for the draw engine to become idle:

• The first case occurs when the application is depending on the draw engine to update
a register or bit field (such as DST_X, or the scissor status bits in the GUI_STAT
register). The application must ensure idleness so that those registers will not be read
back while in an intermediate state.

• The second one occurs when the same memory region is being accessed by the draw
engine and reads/writes through an aperture at the same time. If an engine write and
an aperture write are occurring in the same region, the pixel that lands on top will not
be deterministic. If an engine write and an aperture read are occurring in the same
region, the pixel that is read back may or may not be the pixel just drawn.

Example Code for Waiting for the Draw Engine to be Idle

VOID WaitForIdle(VOID)

{

 WaitForFifo(16);

 while ((regr(GUI_STAT) & 1)!= 0);

}

A state of idleness implies 16 free FIFO entries, but 16 free FIFO entries do
not imply a state of idleness
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-2 Proprietary and Confidential

Preliminary Essentials
5.2.2 Other Essentials

Before beginning, a firm grasp of the mach64 accelerator registers is essential.
Specifically, accessing them through I/O ports or direct memory access, where applicable.
A very important register is the CONFIG_CNTL register as it indicates the current state of
the apertures. BIOS Services 06h and 09h (the query functions) also report the aperture
state and may be used instead.

5.3 Preliminary Essentials

Any programming of the engine must perform certain tasks for initialization. This section
outlines these tasks. Once the following tasks are complete, the mach64 is set up to make
full use of the engine.

5.3.1 mach64 Detection

Before attempting to initialize the engine, ensure that a mach64 card is present and
functioning properly. See Section 3.3: mach64 Detection for the detailed steps.

5.3.2 Hardware Query

It is very helpful to perform a BIOS Service 09h (Query Device), and store the
information for future reference. This data contains essential information for tasks such as
setting the aperture, and determining how to access the registers.

5.3.3 Save/Restore Old Video Mode Information

Normally, it should be possible to return the system to its original state after using the
engine. Thus, old video mode information should be saved so that this information is not
lost.

5.3.4 Open Mode

For the engine, there are a few extra steps that are needed in opening a new video mode
over simply performing a BIOS call 02h. Section 5.4 outlines all the essentials for opening
and closing an engine mode.

5.3.5 Initializing The Engine

Finally, the engine must actually be initialized to a known state. The FIFO queue must be
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-3

Opening and Closing a Mode
cleared and many of the registers must be reset. Section 5.4 details all the necessary
requirements.

5.4 Opening and Closing a Mode

5.4.1 Opening

Opening an accelerator mode involves the following steps:

1. Determine if the mach64 board will support the requested mode.

2. Initialize the Linear Aperture and/or the Small Apertures. Check the Query
Structure to determine which apertures are available.

3. Load and Set the Mode with BIOS Service 02h.

4. Reset the mach64 Engine. See Section 5.2.1.2 Resetting the FIFO.

5. Initialize the palette.

For the mach64GX family, palette initialization is only necessary for 4 bpp and 8 bpp.
Since the mach64CT family contains an internal DAC, special handling is required as
indicated below.

5.4.1.4 Programming The Internal DAC On The mach64CT Family
The internal DAC on the mach64CT family is upward compatible with a stock VGA
DAC. For 4 and 8 bits per pixel (bpp) modes, the data is masked with DAC_MASK and
then used to index a 256 entry look-up table (LUT) or palette. The LUT is 18 bits wide
(RGB 6:6:6). The color in the palette corresponding to the index is then displayed.
DAC_8BIT_EN@DAC_CNTL should be set to zero (6 bits operation) for these modes.
The lower two bits are ignored, so when data is written to the palette, the value should be
shifted up by 2 bits (for example, 0x3F becomes 0xFC).

For 15, 16, 24 and 32 bpp modes, the data is represented directly. For example, a value of
0x001F in video memory for a 16 bpp mode will be displayed as LIGHT BLUE. In order
for the correct colors to display for these modes, the palette addresses must be initialized.
Also, the DAC_8BIT_EN@DAC_CNTL should be set to one (8 bits operation). An
initialization example follows:

Example for Initializing the Internal DAC on the mach64CT Family

#define DAC_W_INDEX 0
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-4 Proprietary and Confidential

Opening and Closing a Mode
#define DAC_DATA 1

#define DAC_MASK 2

#define DAC_R_INDEX 3

void InitHiColorPaletteForCT(void)

{

int index;

// Set to 8 bit DAC operation (bit 8 in DAC_CNTL).

iow8 (ioDAC_CNTL + 1, ior8 (ioDAC_CNTL + 1) | 0x01);

// Set the DAC MASK to FFh.

iow8 (ioDAC_REGS + DAC_MASK, 0xFF);

// Fill the palette starting at 0 to insure direct color

// mapping is employed.

iow8 (ioDAC_REGS + DAC_W_INDEX, 0);

for (index = 0; index < 256; index++)

{

iow8 (ioDAC_REGS + DAC_DATA, index);

iow8 (ioDAC_REGS + DAC_DATA, index);

iow8 (ioDAC_REGS + DAC_DATA, index);

}

}

If the mode is invoked by the BIOS, the palette initialization will be done there.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-5

Opening and Closing a Mode
The internal 8-bit DAC registers may be programmed through the VGA DAC I/O
addresses (3C6 through 3C9), the accelerator I/O space (I/O register select 17, byte offsets
0 through 3), or the accelerator memory mapped space (DWORD memory offset 30, byte
offsets 0 through 3). Each of these address mappings correspond to the same DAC
registers.

5.4.2 Reading from the Palette

1. Write the desired palette entry whose color will be read to the DAC_R_INDEX
register.

2. Read from the DAC_DATA register three times in succession. The first read is
the red component of the color data; the next is green; and the last is blue.

3. The DAC_R_INDEX register will auto-increment after the last read from
DAC_DATA so that the host may read from the next palette entry without re-writing
the DAC_R_INDEX register. Repeat step 2 to read successive palette entries.

5.4.3 Writing to the Palette

1. Write the palette entry that the host desires to be programmed to the
DAC_W_INDEX register.

2. Write the red component data to the DAC_DATA register, followed in
succession by the green and blue components to the same register. Remember that in
6 bit mode, the high two bits of the pixel component data are ignored.

3. The DAC_W_INDEX register will auto-increment after the last write to
DAC_DATA so that the host may program the next palette entry without re-writing
the DAC_W_INDEX register. Repeat step 2 to write successive palette entries.

Table 5-1 DAC Register Mappings

DAC Register Mappings

DAC Register VGA I/O
Address Accelerator I/O Select

Accelerator
Memory Mapped

Byte Offset
DAC_MASK 3C6 17, offset 2 (5EEE, 5DCA or 5DDE) C2
DAC_R_INDEX 3C7 17, offset 3 (5EEF, 5DCB or 5DDF) C3
DAC_W_INDEX 3C8 17, offset 0 (5EEC, 5DC8 or 5DDC) C0
DAC_DATA 3C9 17, offset 1 (5EED, 5DC9 or 5DDD) C1
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-6 Proprietary and Confidential

Initializing the Engine
5.5 Initializing the Engine

The following sections summarize the key items involved in initializing the mach64
engine to a known state.

• Reset and enable the mach64 engine.

• Set the VGA page pointers, if needed.

• Setup a standard engine context.

The engine must be reset, enabled, and the FIFO must be cleared. Resetting and enabling
the engine is normally done by first clearing, then setting
GEN_GUI_EN@GEN_TEST_CNTL. Clearing a locked FIFO involves setting
BUS_FIFO_ERR_ACK@BUS_CNTL and BUS_HOST_ERR_ACK@BUS_CNTL. The
function ResetEngine (), as defined in Section 5.2.1.2, gives an example of the above
steps.

The dual 32KB small aperture page pointers MEM_VGA_RP_SEL and
MEM_VGA_WP_SEL, are set to the start of display memory. Normally, the lower page
pointers are set to page 0 and the upper page pointers are set to page 1 to provide
compatibility with a standard 64KB VGA aperture.

Setting up a standard engine context is discussed in detail below.

5.5.1 Setup Standard Engine Context

The following table indicates a suggested set of initialized values for the mach64 engine.

Table 5-2 Recommended Initialization Values

Recommended Initialization Values For mach64 Engine
Register Group Register Name Initialized Value

Context Control CONTEXT_MASK 0xFFFFFFFF

Destination Draw

DST_OFF_PITCH pitch: (mode pitch)/8, offset: 0
DST_Y_X 0
DST_HEIGHT 0
DST_BRES_ERR 0
DST_BRES_INC 0
DST_BRES_DEC 0

DST_CNTL x: left to right,
y: top to bottom, last pel: enable
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-7

Initializing the Engine
In addition to the above, the registers DP_PIX_WIDTH and DP_CHAIN_MASK need to
be set differently depending on the pixel depth of the display.

Recommended Initialization Values For mach64 Engine
Register Group Register Name Initialized Value

Source Draw

SRC_OFF_PITCH pitch: (mode pitch)/8, offset: 0
SRC_Y_X 0
SRC_HEIGHT1_WIDTH1 height: 1, width: 1
SRC_Y_X_START 0
SRC_HEIGHT2_WIDTH2 height: 1, width: 1

SRC_CNTL direction: left to right, trajectory: unbounded
Y

Host Data HOST_CNTL 0

Pattern
PAT_REG0 0
PAT_REG1 0
PAT_CNTL 0

Scissor

SC_LEFT 0
SC_TOP 0
SC_BOTTOM (mode y resolution) - 1
SC_RIGHT (mode pitch) - 1

Data Path

DP_BKGD_CLR 0 (normally Black)
DP_FRGD_CLR 0xFFFFFFFF (normally White)
DP_WRITE_MASK 0xFFFFFFFF
DP_MIX foreground: SRC, background: DST

DP_SRC foreground: foreground, background:
background, mono: always ‘1’

Color Compare
CLR_CMP_CLR 0
CLR_CMP_MASK 0xFFFFFFFF
CLR_CMP_CNTL compare: false, key: destination

Table 5-2 Recommended Initialization Values (Continued)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-8 Proprietary and Confidential

Initializing the Engine
Finally, when the above registers have been set, generate a wait_for_idle () call to
complete initialization.

5.5.2 InitEngine Example

The following example is the implementation of the engine initialization function
init_engine () in the mach64 sample code.

Example Code for Initializing The Engine

void init_engine (void)

{

unsigned long pitch_value, xres, yres;

// determine modal information from global mode structure

xres = (unsigned long) (MODE_INFO.xres);

yres = (unsigned long) (MODE_INFO.yres);

pitch_value = (unsigned long) (MODE_INFO.pitch);

if (MODE_INFO.bpp == 24)

{

// In 24 bpp, the engine is in 8 bpp - this requires that all

// horizontal coordinates and widths must be adjusted

pitch_value = pitch_value * 3;

}

// Reset engine, enable, and clear any engine errors

reset_engine();

// Ensure that vga page pointers are set to zero - the upper

// page pointers are set to 1 to handle overflows in the

Table 5-3 Pixel Depth-Dependent Register Initialization

Pixel Depth-Dependent Register Initialization
Pixel
Depth DP_PIX_WIDTH DP_CHAIN_MASK

4 host, source, destination: all 4 bpp, pixel order: MSB to LSB 0x8888
8 host: 8 bpp, source: 8 bpp, destination: 8 bpp 0x8080

15 host: 15 bpp, source: 15 bpp, destination: 15 bpp 0x4210
16 host: 16 bpp, source: 16 bpp, destination: 16 bpp 0x8410
24 host: 8 bpp, source: 8 bpp, destination: 8 bpp 0x8080
32 host: 32 bpp, source: 32 bpp, destination: 32 bpp 0x8080
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-9

Initializing the Engine
// lower page

iow32 (MEM_VGA_WP_SEL, 0x00010000);

iow32 (MEM_VGA_RP_SEL, 0x00010000);

// ---- Setup standard engine context ----

// All GUI registers here are FIFOed - therefore, wait for

// the appropriate number of empty FIFO entries

wait_for_fifo(14);

// enable all registers to be loaded for context loads

regw(CONTEXT_MASK, 0xFFFFFFFF);

// set destination pitch to modal pitch, set offset to zero

regw(DST_OFF_PITCH, (pitch_value / 8) << 22);

// zero these registers (set them to a known state)

regw(DST_Y_X, 0);

regw(DST_HEIGHT, 0);

regw(DST_BRES_ERR, 0);

regw(DST_BRES_INC, 0);

regw(DST_BRES_DEC, 0);

// set destination drawing attributes

regw(DST_CNTL, DST_LAST_PEL | DST_Y_TOP_TO_BOTTOM |

DST_X_LEFT_TO_RIGHT);

// set source pitch to modal pitch, set offset to zero

regw(SRC_OFF_PITCH, (pitch_value / 8) << 22);

// set these registers to a known state

regw(SRC_Y_X, 0);

regw(SRC_HEIGHT1_WIDTH1, 1);

regw(SRC_Y_X_START, 0);

regw(SRC_HEIGHT2_WIDTH2, 1);

// set source pixel retrieving attributes

regw(SRC_CNTL, SRC_LINE_X_LEFT_TO_RIGHT);

// set host attributes
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-10 Proprietary and Confidential

Initializing the Engine
wait_for_fifo (13);

regw(HOST_CNTL, 0);

// set pattern attributes

regw(PAT_REG0, 0);

regw(PAT_REG1, 0);

regw(PAT_CNTL, 0);

// set scissors to modal size

regw(SC_LEFT, 0);

regw(SC_TOP, 0);

regw(SC_BOTTOM, yres-1);

regw(SC_RIGHT, pitch_value-1);

// set background color to minimum value (usually BLACK)

regw(DP_BKGD_CLR, 0);

// set foreground color to maximum value (usually WHITE)

regw(DP_FRGD_CLR, 0xFFFFFFFF);

// set write mask to effect all pixel bits

regw(DP_WRITE_MASK, 0xFFFFFFFF);

// set foreground mix to overpaint and background mix to

// no-effect

regw(DP_MIX, FRGD_MIX_S | BKGD_MIX_D);

// set primary source pixel channel to foreground color

// register

regw(DP_SRC, FRGD_SRC_FRGD_CLR);

// set compare functionality to false (no-effect on

// destination)

wait_for_fifo(3);

regw(CLR_CMP_CLR, 0);

regw(CLR_CMP_MASK, 0xFFFFFFFF);

regw(CLR_CMP_CNTL, 0);

// set pixel depth

switch(MODE_INFO.bpp)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-11

Initializing the Engine
{

case 4 :

wait_for_fifo(2);

regw(DP_PIX_WIDTH, HOST_4BPP | SRC_4BPP |

 DST_4BPP | BYTE_ORDER_MSB_TO_LSB);

 regw(DP_CHAIN_MASK, 0x8888);

break;

case 8 :

wait_for_fifo(2);

 regw(DP_PIX_WIDTH, HOST_8BPP | SRC_8BPP |
DST_8BPP |

BYTE_ORDER_LSB_TO_MSB);

regw(DP_CHAIN_MASK, 0x8080);

break;

case 15:

case 16:

if (MODE_INFO.depth == 555)

{

wait_for_fifo(2);

regw (DP_PIX_WIDTH, HOST_15BPP | SRC_15BPP |

DST_15BPP | BYTE_ORDER_LSB_TO_MSB);

regw (DP_CHAIN_MASK, 0x4210);

 }

else

{

wait_for_fifo(2);

 regw (DP_PIX_WIDTH, HOST_16BPP | SRC_16BPP |

DST_16BPP | BYTE_ORDER_LSB_TO_MSB);

regw (DP_CHAIN_MASK, 0x8410);

}

break;

case 24:

wait_for_fifo(2);

regw (DP_PIX_WIDTH, HOST_8BPP | SRC_8BPP |

DST_8BPP | BYTE_ORDER_LSB_TO_MSB);

regw (DP_CHAIN_MASK, 0x8080);

break;
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-12 Proprietary and Confidential

Initializing the Engine
case 32:

wait_for_fifo(2);

regw (DP_PIX_WIDTH, HOST_32BPP | SRC_32BPP |

DST_32BPP | BYTE_ORDER_LSB_TO_MSB);

regw (DP_CHAIN_MASK, 0x8080);

break;

}

wait_for_idle (); // insure engine is idle before leaving

}

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 5-13

Initializing the Engine
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
5-14 Proprietary and Confidential

Chapter 6
Engine Operations

6.1 Introduction
This chapter demonstrates standard mach64 accelerator operations.

6.2 Background Information

6.2.1 Details About the Registers

The following is a summary of mach64 register groups and their functions and purpose.

6.2.1.1 Accelerator CRTC and DAC Registers
Clock Control: Used for controlling the frequency synthesizer.

CRTC: Used for setting up the Cathode Ray Tube Controller.

DAC: Used for programming the Digital-to-Analog Converter.

Hardware Cursor: Used for programming the hardware cursor.

Overscan: Used for setting up the color in the overscan display area.

6.2.1.2 Setup and Control Registers
Bus Control: Used for Bus-specific access.

Configuration: Used for configuring the mach64 engine.

Memory Control: Used for setting up the apertures.

Scratch Pad: Used by the BIOS at boot time.

Test: Used when the mach64 is put into diagnostic mode.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-1

Background Information
6.2.1.3 Draw Engine Control Registers
Color Compare: Used in setting up the color comparator circuit.

Context Control: Used with display contexts.

Data Path: Used to set up the pixel data path.

Engine Status: Provides information on the current status of the draw engine.

FIFO Status: Provides information on the current status of the FIFO Queue.

Host Data: Used to provide data from the host to the mach64 engine.

Pattern: Used when drawing patterned lines or rectangles.

Scissor: Used to inhibit the draw engine outside a specified region.

6.2.1.4 Draw Engine Trajectory Registers
Destination Draw Engine: Used to set up the destination trajectory for the draw
operation.

Source Draw Engine: Used to set up the source trajectory for the draw operation.

6.2.2 Logical Pixel Data Path

This section describes the internal architecture of the mach64 graphics coprocessors. This
powerful architecture is referred to as the Pixel Data Path. It provides great flexibility in
the way the coprocessor may use color data from different sources to modify the
destination pixels. The accompanying figure shows a block diagram of the pixel data path.
The pixel data path is central to all the coprocessor drawing operations. As such, a
thorough understanding of this architecture and the operation of its components is
essential to programming the coprocessor.

Before the pixel data path is described, a number of key terms will be defined.
Destination refers to a region in on-screen or off-screen display memory that will be
affected by a drawing operation. Source refers to the provider of the data used during a
drawing operation to affect a destination pixel region. The source data may be set to
specific colors (solid rectangle fills, solid lines, etc.); supplied by the host through data
registers (pattern or host registers); read from a region in on-screen or off-screen display
memory through source trajectories (bitblits). A multiplexer, or mux, is a switching
device that uses one or more control lines to select a unique output from several inputs. An
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-2 Proprietary and Confidential

Background Information
Arithmetic Logic Unit, or ALU, is a processor that performs a Boolean logic or
arithmetic operation on two or more operands to produce an output. The operation
performed by the ALU is referred to as the mix.

The logical pixel data path gives a basic understanding of how the combination of input
values stored in the GUI registers result in screen output. It can be broken up into two
distinct units: The monochrome to two-color color expansion circuit, and the color
compare circuit. The physical data path is actually 64 bits wide for all color depths.
Therefore, in 8 bpp modes, eight pixels are processed simultaneously; in 16 bpp modes,
four pixels are processed simultaneously, and so on.

6.2.2.1 Monochrome To Two-color Color Expansion Circuit
This is the first half of the logical pixel data path. Its purpose is to generate source data.
Various registers are set to define what the source data will be. Specifications set include
color, pattern, trajectory, mixing logic, etc. In the pixel data path architecture, one of two
color source units may provide the source data used to modify the destination pixels.
These color sources are referred to as the foreground source and background source.
During each drawing operation, one of these two sources is always selected for the source
of each pixel area.

The selections and control of the source all begin with the DP_SRC register. Referring to
the accompanying diagram, the MONO MUX, FRGD MUX, and BKGD MUX are all
controlled by DP_SRC. These controls determine what the mono, foreground, and
background source will be.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-3

Background Information
Figure 6-2. Color Expansion and Color Compare Circuits

D
P_

FR
G

D
_M

IX

1

C
LR

_C
M

P
_F

N
@

C
LR

_C
M

P_
C

N
TL

C
LR

_C
M

P_
C

LR

S
R

C

Pi
xe

l T
o

Be

1,
4,

8,
16

,3
2

D
es

tin
at

io
n

M
on

oc
hr

om
e

A
LU

 W
rit

e
Sc

re
en

M
em

or
y

No
te

:
 T

he
se

 tw
o

bl
oc

ks
 a

re
 V

ER
Y

IM
PO

RT
AN

T
in

 u
nd

er
st

an
di

ng
 th

e
m

ac
h6

4 .D
es

tin
at

io
n

 R
ea

d

D
es

tin
at

io
n

 R
ea

d

1,
4,

8,
16

,3
2

1,
4,

8,
16

,3
2

D
P_

BK
G

D
_M

IX

D
es

tin
at

io
n

So
ur

ce

D
P_

B
KG

D
_C

LR
D

P_
FR

G
D

_C
LR

C
ol

or
 H

os
t

C
ol

or
 B

lit
C

ol
or

 P
at

te
rn

C
ol

or
 H

os
t

C
ol

or
 B

lit
C

ol
or

 P
at

te
rn

M
on

o
H

os
t

M
on

o
B

lit
M

on
o

P
at

te
rn

A
lw

ay
s

‘1
’

D
P

_B
KG

D
_C

LR

D
P

_F
R

G
D

_C
LR

D
P

_M
O

N
O

_S
R

C
@

D
P_

S
R

C

D
P

_F
R

G
D

_S
R

C
@

D
P

_S
R

C

D
P_

B
K

G
D

_S
R

C
@

D
P

_S
R

C

1,
4,

8,
16

,3
2

1,
4,

8,
16

,3
2

1
D

es
tin

at
io

n

So
ur

ce

So
ur

ce

Fo
re

gr
ou

nd
So

ur
ce

B
ac

kg
ro

un
d

So
ur

ce

C
ol

or
So

ur
ce

R
es

ul
t

5

S
ou

rc
e

D
es

tin
at

io
n

C
ol

or
M

U
X

SR
C

/D
ES

T

SR
C

/D
ES

T

M
ix

M
U

X

AL
U

M
on

o
M

U
X

FR
G

D
M

U
X

BK
G

D
M

U
X

C
LR

_C
M

P
_S

R
C

@
C

LR
_C

M
P

_C
N

TL

M
on

oc
hr

om
e

to
 T

w
o-

co
lo

r C
ol

or
 E

xp
an

si
on

 C
irc

ui
t

Co
lo

r C
om

pa
re

 C
irc

ui
t

RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-4 Proprietary and Confidential

Background Information
Mono Source: The mono MUX specifies the source of the mono source (control bit
stream). This bit stream contains values of either ‘0’ or ‘1’, each corresponding to a pixel.
Each pixel has one and only one value. This value is used to control the color mux and
mix mux. If the value is ‘0’, the background color and mix is used. If the value is ‘1’, the
foreground color and mix is used. There are four possible settings for the mono source, as
set out by the DP_SRC register:

• Always ‘1’: This is a trivial source and is used for simple blits and drawing functions.
It forces the foreground source and foreground mix to always be used. The
background source and mix is ignored.

• Mono Pattern: The source here becomes the 8x8 fixed mono pattern. The
PAT_CNTL register enables the mono pattern, and the PAT_REG registers define it.
See Section 6.2.2.4 Pattern Consumption for details on how the pattern registers are
interpreted.

• Mono Host: Setting the mono source to mono host forces the input to come from the
HOST_DATA registers. The data must be set up previously, and the HOST_CNTL
register must also be initialized. HOST_CNTL controls the consumption of host data
on 1bpp and 4bpp data. If HOST_BYTE_ALIGN@ HOST_CNTL is set, host
consumption advances to the nearest byte boundary whenever the destination
trajectory advances in the Y directions. The host pixel depth must be set to
monochrome with DP_PIX_WIDTH, and the monochrome data is color expanded
into foreground and background color sources. Destination pixel depth may be set to
any valid pixel depth. Section 6.2.2.3 Host Data Consumption gives a detailed
explanation on the consumption of the host data.

• Mono Blit: This source selects one of four possible source trajectories (see
trajectories sect...) using the SRC_CNTL register. The source pixel depth must be set
to monochrome with DP_PIX_WIDTH, and the monochrome data is color expanded
into foreground and background color sources. Destination pixel depth may be set to
any valid pixel depth. The source is defined by the source trajectory registers. More in
trajectories can be found in section 6.1.3 Trajectories.

Foreground and Background Source: The foreground and background sources are
identical in their characteristics. They contain color information only, and are referred to
as the color source. One of five settings can be independently selected for the foreground
and background source. These settings are described as follows:

• DP_BKGD_CLR: 1 to 32 bit value corresponding to a color located in the
background color register. The number of bits used varies depending on the graphics
mode used.

• DP_FRGD_CLR: Same as DP_BKGD_CLR, but using the foreground color
register.

• Color Blit: Similar to Mono Blit, except DP_PIX_WIDTH is set to the appropriate
pixel depth. Again, the source is defined by the source trajectory registers.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-5

Background Information
• Color Pattern: The source is the 4x2 and 8x1 fixed color patterns set up in
PAT_REG. These patterns are only useful in 8bpp draw mode. PAT_CNTL is used to
select which of the color patterns is to be used.

• Color Host: Similar to the Mono Host, the source is taken from HOST_DATA and
controlled by HOST_CNTL. If the Color Host is selected for one of the color sources,
host data will be consumed for every pixel, regardless of whether the color MUX
selects that color source.

Color MUX: The Color MUX is fairly straightforward. The bit stream generated by the
mono MUX determines whether the output of the foreground MUX or background MUX
is used to generate the output color. As indicated in Mono Source, ‘0’ for background
source and ‘1’ for foreground source.

Mix MUX: The Mix MUX is controlled by the same bit stream as the Color MUX and
determines how the output gets mixed before it is displayed. Once again, the control bits
are interpreted as ‘0’ for background mix and ‘1’ for foreground mix.

ALU: The ALU performs the actual mixing of the color source (source input) and
destination read (destination input) based on the Mix MUX output. The result of the mix is
passed on to the logical color compare circuit.

6.2.2.2 Color Compare Circuit
The second half of the Logical Pixel Data Path is the color compare circuit. It is useful in
performing operations such as transparent blits. It is driven by the CLR_CMP_CNTL
register. Source data is inputted to this circuit and the color compare registers determine if
the source data (output of the ALU) gets displayed to the screen or not (current pixel in
video memory is re-outputted).

The comparator (located at the center of the diagram) is the heart of the color compare
circuit. This determines what will be outputted to the screen. Its control is
CLR_CMP_FCN@CLR_CMP_CNTL. This field determines how the source data is
compared to CLR_CMP_CLR, and can be set to TRUE, FALSE, EQUAL, or NOT
EQUAL)

Trivial Cases (TRUE or FALSE): Trivial cases are when this field is either true or false.
If it is set to false, the output of the comparator is always false, resulting in the source data
always being outputted to the screen. In essence, it’s as if the color compare circuit were
not even there, and the ALU result from the monochrome to two-color expansion circuit

Note that the host pixel depth must be set to the same pixel depth as the
destination pixel depth with DP_PIX_WIDTH
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-6 Proprietary and Confidential

Background Information
were outputted directly to the screen. If the field is set to true, the output of the comparator
is always true, and the bottom SRC/DEST MUX only allows the destination read to pass.
Here, the destination is outputted to itself, and the screen contents don’t change. The
source data is basically ignored.

Non-Trivial Cases (EQUAL or NOT EQUAL): Non-trivial cases are when
CLR_CMP_FCN is set to CLR_CMP_CLR or not (CLR_CMP_CLR). In these cases the
result of the top left SRC/DEST MUX is compared with the contents of CLR_CMP_CLR.

The top left SRC/DEST MUX is controlled by CLR_CMP_SRC@CLR_CMP_CNTL. It
basically specifies whether CLR_CMP_CLR is compared with the source or destination.
It is only used if CLR_CMP_FCN is set to a non-trivial value. The output of this MUX is
compared with CLR_CMP_CLR (EQUAL or NOT_EQUAL), and the result of the
comparator is either true or false. This result gets fed into the bottom MUX and
determines if the source (output of the ALU circuit) or destination (current pixel in video
memory) gets outputted to the screen.

6.2.2.3 Host Data Consumption
The following tables illustrate the order in which pixels are consumed from the
HOST_DATA register. The shaded numbers indicate the bit position within the
HOST_DATA register. The numbers in the table indicate the order of pixel consumption,
starting from zero.

HOST_DATA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Monochrome or 1 bpp, left-to-right,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=0

24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

Monochrome or 1 bpp, right-to-left,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=0

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

Monochrome or 1 bpp, left-to-right,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Monochrome or 1 bpp, right-to-left,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-7

Background Information
Notes:

• Host data consumption for 32 bits per pixel is self-evident.

• Host data consumption for line draws is the same as for left-to-right trajectories.

• Pixel consumption in 15 bpp modes is the same as 16 bpp modes.

• Packed 24 bpp mode is essentially 8 bpp mode. R, G, and B component data must be
fed in individually in 8-bit units.

• The HOST_BYTE_ALIGN@HOST_CNTL bit may affect pixel consumption for
1 bpp and 4 bpp modes. When it is set, pixel consumption advances to the next
nearest byte boundary whenever the destination advances in the Y direction. Line
draws are unaffected.

• If too much host data is written to the HOST_DATA register, the extra data will be
ignored.

• If not enough data is written to the HOST_DATA register, any subsequent write to a
FIFOed register will cause the draw engine to panic; that is, the draw operation will
complete with a garbage color.

HOST_DATA
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0

4 bpp, left-to-right,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=0

6 7 4 5 2 3 0 1

4 bpp, right-to-left,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=0

1 0 3 2 5 4 7 6

4 bpp, left-to-right,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=1

7 6 5 4 3 2 1 0

4 bpp, right-to-left,
DP_BYTE_PIX_ORDER@DP_PIX_WIDTH=1

0 1 2 3 4 5 6 7

8 bpp, left-to-right 3 2 1 0

8 bpp, right-to-left 0 1 2 3

16 bpp, left-to-right 1 0

16 bpp, right-to-left 0 1
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-8 Proprietary and Confidential

Background Information
6.2.2.4 Pattern Consumption
Pattern consumption for the various fixed patterns is shown in the tables below. P0 and P1
indicate PAT_REG0 and PAT_REG1 respectively. The numbers in parentheses are the
bits within the pattern registers, which are used according to the destination pixel location.

Monochrome 8x8 fixed pattern, DP_BYTE_PIX_ORDER@DP_PIX_WIDTH = 0

(DST_Y mod 8)
(DST_X mod 8)

0 1 2 3 4 5 6 7
0 P0(7) P0(6) P0(5) P0(4) P0(3) P0(2) P0(1) P0(0)
1 P0(15) P0(14) P0(13) P0(12) P0(11) P0(10) P0(9) P0(8)
2 P0(23) P0(22) P0(21) P0(20) P0(19) P0(18) P0(17) P0(16)
3 P0(31) P0(30) P0(29) P0(28) P0(27) P0(26) P0(25) P0(24)
4 P1(7) P1(6) P1(5) P1(4) P1(3) P1(2) P1(1) P1(0)
5 P1(15) P1(14) P1(13) P1(12) P1(11) P1(10) P1(9) P1(8)
6 P1(23) P1(22) P1(21) P1(20) P1(19) P1(18) P1(17) P1(16)
7 P1(31) P1(30) P1(29) P1(28) P1(27) P1(26) P1(25) P1(24)

Monochrome 8x8 fixed pattern, DP_BYTE_PIX_ORDER@DP_PIX_WIDTH = 1

(DST_Y mod 8)
(DST_X mod 8)

0 1 2 3 4 5 6 7
0 P0(0) P0(1) P0(2) P0(3) P0(4) P0(5) P0(6) P0(7)
1 P0(8) P0(9) P0(10) P0(11) P0(12) P0(13) P0(14) P0(15)
2 P0(16) P0(17) P0(18) P0(19) P0(20) P0(21) P0(22) P0(23)
3 P0(24) P0(25) P0(26) P0(27) P0(28) P0(29) P0(30) P0(31)
4 P1(0) P1(1) P1(2) P1(3) P1(4) P1(5) P1(6) P1(7)
5 P1(8) P1(9) P1(10) P1(11) P1(12) P1(13) P1(14) P1(15)
6 P1(16) P1(17) P1(18) P1(19) P1(20) P1(21) P1(22) P1(23)
7 P1(24) P1(25) P1(26) P1(27) P1(28) P1(29) P1(30) P1(31)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-9

Background Information
6.2.3 Trajectories

A trajectory is the path traversed through display memory while reading source data or
drawing destination data during a raster operation. A trajectory is defined by a set of
parameters that describe its location, dimensions, and attributes, such as its starting point
in memory, width and height if a rectangular trajectory, and the direction in which pixel
data is read or written. A trajectory may extend through a linear, continuous region in
memory starting from a specific location. Alternatively, its route may map a rectangular
region relative to a coordinate system whose origin in memory and pitch between
consecutive lines are defined as part of the trajectory's parameters.

The trajectories used by the mach64 accelerator functions fall into two categories: source
trajectories, and destination trajectories. A source trajectory describes a region in
memory from which source data is read for a raster operation. A destination trajectory
describes the region where a raster operation will draw pixel data.

Several drawing operations require data from one region of memory to be transferred to
another (and in some cases, the source data and destination data may need to be combined
in some fashion). For example, a bitblt (bit block transfer) operation must copy data from
a rectangular region in on-screen or off-screen memory to another rectangular region in
on-screen or off-screen memory. The rectangular source region may be defined by a
rectangular source trajectory, while the destination region may be defined by a rectangular
destination trajectory. As the destination trajectory advances through its path, it writes the
data that is read through the source trajectory as it moves along its path.

Many examples showing how to set up and use source and destination trajectories are
presented in subsequent sections where common accelerator functions are described.
Meanwhile, the following table and sections describe the source and destination

8 bpp, 4x2 fixed pattern

(DST_Y mod 2)
(DST_X mod 4)

0 1 2 3
0 P0(7:0) P0(15:8) P0(23:16) P0(31:24)
1 P1(7:0) P1(15:8) P1(23:16) P1(31:24)

8 bpp, 8x1 fixed pattern
(DST_X mod 8)

0 1 2 3 4 5 6 7
P0(7:0) P0(15:8) P0(23:16) P0(31:17) P1(7:0) P1(15:8) P1(23:16) P1(31:24)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-10 Proprietary and Confidential

Background Information
trajectories and explain the criteria for establishing them.

The Trajectory Registers column specifies all the registers that need to be initialized for
the desired trajectory.

The Initiator registers are registers that, once set, will initiate the draw operation. This
means that all source trajectory registers (if any) and any other destination trajectory
registers that need to be set must already be set. (i.e., this register is always the last one
set.) This initiator register also indicated to the engine what the destination trajectory is.

The Enable bits are located in the SRC_CNTL register. They indicate what the source
trajectory will be. They are usually, but not necessarily, set first. The bits are examined in
the following order: SRC_LINEAR, SRC_PATT_ENA, and SRC_PATT_ROT.

Trajectory Trajectory Registers Enable/Initiate

De
st

in
at

io
n

Rectangle DST_OFFSET, DST_PITCH, DST_X,
DST_Y, DST_WIDTH, DST_HEIGHT,
DST_X_DIR@DST_CNTL,
DST_Y_DIR@DST_CNTL

DST_WIDTH or
DST_HEIGHT_WIDTH or
DST_X_WIDTH

In
iti

at
or

s

Line DST_OFFSET, DST_PITCH, DST_X,
DST_Y, DST_BRES_LNTH,
DST_BRES_ERR, DST_BRES_INC,
DST_BRES_DEC,
DST_X_DIR@DST_CNTL,
DST_Y_DIR@DST_CNTL,
DST_Y_MAJOR@DST_CNTL

DST_BRES_LNTH

So
ur

ce

Strictly Linear SRC_OFFSET
If destination is line, then
SRC_LINE_X_DIR@SRC_CNTL, else
DST_X_DIR@DST_CNTL

SRC_LINEAR@SRC_CNTL==1

En
ab

le
s

Unbounded Y SRC_OFFSET, SRC_PITCH, SRC_X,
SRC_Y, SRC_WIDTH1
If destination is line, then also
SRC_LINE_X_DIR@SRC_CNTL

SRC_PATT_ENA@SRC_CNTL==0
SRC_PATT_ROT@SRC_CNTL==0
SRC_LINEAR@SRC_CNTL==0

General Pattern SRC_OFFSET, SRC_PITCH, SRC_X,
SRC_Y, SRC_WIDTH1, SRC_HEIGHT1
If destination is line, then also
SRC_LINE_X_DIR@SRC_CNTL

SRC_PATT_ENA@SRC_CNTL==1
SRC_PATT_ROT@SRC_CNTL==0
SRC_LINEAR@SRC_CNTL==0

General Pattern
with Rotation

SRC_OFFSET, SRC_PITCH, SRC_X,
SRC_Y, SRC_WIDTH1, SRC_HEIGHT1,
SRC_X_START, SRC_Y_START,
SRC_WIDTH2, SRC_HEIGHT2
If destination is line, then also
SRC_LINE_X_DIR@SRC_CNTL

SRC_PATT_ENA@SRC_CNTL==1
SRC_PATT_ROT@SRC_CNTL==1
SRC_LINEAR@SRC_CNTL==0
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-11

Background Information
Notes:

• DP_PIX_WIDTH, SRC_OFF_PITCH and SRC_LINEAR@SRC_CNTL should be
written before any other source registers because they do not force a recalculation of
the source memory address. SRC_Y should be written to in order to force a
recalculation before doing a draw operation with a blit source. Similarly, for
DP_PIX_WID and DST_OFF_PITCH, a destination address recalculation can be
forced by writing to DST_Y.

• SRC_WIDTH1, SRC_WIDTH2, and DST_WIDTH should never be set to zero. This
is an invalid condition.

6.2.3.1 Destination Trajectory 1, Rectangular

Figure 6-2. Destination Trajectory 1

Description: The trajectory begins at the initial DST_X, DST_Y location. The trajectory
 traverses in a left-to-right or right-to-left direction depending on

DST_X_DIR@DST_CNTL, until DST_WIDTH pixels have been drawn.
DST_X is then reset to the original DST_X value, and DST_Y is advanced in
a top-to-bottom or bottom-to-top direction depending on
DST_Y_DIR@DST_CNTL. The operation continues until DST_HEIGHT
lines have been drawn.

Initiator: DST_WIDTH or DST_HEIGHT_WIDTH or DST_X_WIDTH

DST_HEIGHT

DST_WIDTH

DST_PITCH

DST_Y_DIR

DST_X_DIR

DST_X

DST_Y

DST_OFFSET
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-12 Proprietary and Confidential

Background Information
6.2.3.2 Destination Trajectory 2, Line

Figure 6-3. Destination Trajectory 2

Description: The line drawing pseudocode that describes the draw trajectory is based on
Bresenham’s Algorithm:

for (i=0; i<DST_BRES_LNTH; i++)

{

 WritePixel(DST_X, DST_Y)

// Advance in the major axis direction.

if (DST_Y_MAJOR) {

if (DST_Y_DIR) DST_Y += 1

else DST_Y -= 1

 } else {

if (DST_X_DIR) DST_X += 1

else DST_X -= 1

 }

 if (DST_BRES_ERR < 0 || (DST_BRES_SIGN && DST_BRES_ERR==0))

 {

// Axial step.

DST_BRES_ERR += DST_BRES_INC

 }

 else

 {

// Diagonal step.

DST_BRES_ERR += DST_BRES_DEC

 // Advance in the minor axis direction also.

if (DST_Y_MAJOR)

0

12

3

4

5 6

7

Octant DST_X_DIR DST_Y_MAJOR DST_Y_DIR
0 1 0 0
1 1 1 0
2 0 1 0
3 0 0 0
4 0 0 1
5 0 1 1
6 1 1 1
7 1 0 1
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-13

Background Information
{

if (DST_X_DIR) DST_X += 1

else DST_X -= 1

}

else

{

if (DST_Y_DIR) DST_Y += 1

else DST_Y -= 1

}

}

}

if (DST_LAST_PEL) WritePixel(DST_X, DST_Y)

The octant bits and DST_LAST_PEL reside in DST_CNTL.

The Bresenham parameters are calculated as follows:

DST_BRES_ERR = 2 * min(|dx|,|dy|) - max(|dx|,|dy|)

DST_BRES_INC = 2 * min(|dx|,|dy|)

DST_BRES_DEC = 2 * min(|dx|,|dy|) - 2 * max(|dx|,|dy|)

DST_BRES_LNTH = max(|dx|,|dy|) + 1

Initiator: DST_BRES_LNTH

Comments: The DST_BRES_SIGN bit is used to determine whether a zero value for the
Bresenham error term is considered to be positive or negative. This is
important for drawing lines with the same endpoints identically no matter
which direction the line draw proceeds in. It is up to the host application to set
a convention (right/left or top/bottom) for using this bit.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-14 Proprietary and Confidential

Background Information
6.2.3.3 Source Trajectory 1, Strictly Linear

Figure 6-4. Source Trajectory 1

Description: This source trajectory traverses linearly in memory starting at SRC_OFFSET.
Pixels are consumed until the destination trajectory has halted.

Criterion: SRC_LINEAR@SRC_CNTL==1
Comments: Source offset and SRC_X_DIR are the only parameters used to set up the

source trajectory. SRC_X_DIR tracks DST_X_DIR@DST_CNTL in the case
of blits. For lines, SRC_X_DIR equals SRC_LINE_X_DIR@SRC_CNTL.
SRC_X_DIR should be set to go from left to right.

6.2.3.4 Source Trajectory 2, Unbounded Y

Figure 6-5. Source Trajectory 2

SRC_X_DIR
SRC_OFFSET

SRC_WIDTH1

SRC_PITCH

SRC_X_DIR

SRC_Y_DIR

SRC_X

SRC_Y

SRC_OFFSET
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-15

Background Information
Description: This source trajectory begins at SRC_X, SRC_Y. This trajectory traverses in a
left-to-right or right-to-left direction depending on SRC_X_DIR (equal to
DST_X_DIR@DST_CNTL for destination rectangles, or
SRC_LINE_X_DIR@SRC_CNTL for destination lines). When
SRC_WIDTH1 pixels have been consumed, SRC_X is reset to its original
value and SRC_Y is advanced in a top-to-bottom or bottom-to-top direction
depending on SRC_Y_DIR (which is equal to DST_Y_DIR@DST_CNTL).
Pixels are consumed until the destination trajectory has halted.

Criterion: SRC_PATT_EN@SRC_CNTL==0 and SRC_PATT_ROT@SRC_CNTL==0
and SRC_LINEAR@SRC_CNTL==0

Comments: If the destination trajectory is rectangular, SRC_X_DIR and SRC_Y_DIR
track DST_X_DIR@DST_CNTL and DST_Y_DIR@DST_CNTL. For lines,
SRC_LINE_X_DIR@SRC_CNTL is used and the source trajectory does not
advance in the Y direction.

6.2.3.5 Source Trajectory 3, General Pattern

Figure 6-6. Source Trajectory 3

Description: This source trajectory begins at SRC_X, SRC_Y. This trajectory traverses in a
left-to-right or right-to-left direction depending on SRC_X_DIR (equal to
DST_X_DIR@DST_CNTL for destination rectangles, or
SRC_LINE_X_DIR@SRC_CNTL for destination lines). When

SRC_X_DIR

SRC_Y_DIR

SRC_X

SRC_Y

SRC_WIDTH1

SRC_PITCH

SRC_HEIGHT1

SRC_OFFSET
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-16 Proprietary and Confidential

Background Information
SRC_WIDTH1 pixels have been consumed, SRC_X is reset to its original
value. When the destination advances in the Y direction, SRC_X is reset to its
original value and SRC_Y is advanced in a top-to-bottom or bottom-to-top
direction depending on SRC_Y_DIR (which is equal to
DST_Y_DIR@DST_CNTL). When SRC_HEIGHT1 lines have been
consumed, SRC_Y is reset to its original value. Pixels are consumed until the
destination trajectory has halted.

Criterion: SRC_PATT_EN@SRC_CNTL==1 and SRC_PATT_ROT@SRC_CNTL==0
and SRC_LINEAR@SRC_CNTL==0

Comments: If the destination trajectory is rectangular, SRC_X_DIR and SRC_Y_DIR
track DST_X_DIR@DST_CNTL and DST_Y_DIR@DST_CNTL. For lines,
SRC_LINE_X_DIR@SRC_CNTL is used and the source trajectory does not
advance in the Y direction.

6.2.3.6 Source Trajectory 4, General Pattern With Rotation

Figure 6-7. Source Trajectory 4

SRC_X_DIR

SRC_Y_DIR SRC_X

SRC_Y

SRC_HEIGHT1

SRC_HEIGHT2

SRC_WIDTH2

SRC_WIDTH1

SRC_PITCH

SRC_X_START

SRC_Y_START

SRC_OFFSET
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-17

Background Information
Description: This source trajectory begins at SRC_X, SRC_Y. This trajectory traverses in a
left-to-right or right-to-left direction depending on SRC_X_DIR (equal to
DST_X_DIR@DST_CNTL for destination rectangles, or
SRC_LINE_X_DIR@SRC_CNTL for destination lines). When
SRC_WIDTH1 pixels have been consumed, SRC_X is reset to
SRC_X_START. When the destination advances in the Y direction, SRC_X is
reset to SRC_X_START and SRC_Y is advanced in a top-to-bottom or
bottom-to-top direction depending on SRC_Y_DIR (which is equal to
DST_Y_DIR@DST_CNTL). All further traversals in the X direction use
SRC_WIDTH2, instead of SRC_WIDTH1 and reset to SRC_X_START.
When SRC_HEIGHT1 lines have been consumed, SRC_Y is reset to
SRC_Y_START. All further traversals use SRC_HEIGHT2 instead of
SRC_HEIGHT1 and reset to SRC_Y_START when the count is exhausted.
Pixels are consumed until the destination trajectory has halted.

Criterion: SRC_PATT_EN@SRC_CNTL==1 and SRC_PATT_ROT@SRC_CNTL==1
and SRC_LINEAR@SRC_CNTL==0

Comments: If the destination trajectory is rectangular, SRC_X_DIR and SRC_Y_DIR
track DST_X_DIR@DST_CNTL and DST_Y_DIR@DST_CNTL. For lines,
SRC_LINE_X_DIR@SRC_CNTL is used and the source trajectory does not
advance in the Y direction.

6.2.3.7 Trajectory Modifier 1, SRC_BYTE_ALIGN
When SRC_BYTE_ALIGN@SRC_CNTL is set, the source pointer skips to the next byte
boundary when the destination trajectory advances in the Y direction. There is a similar bit
for host data called HOST_BYTE_ALIGN@HOST_CNTL. These bits are only
meaningful for 1 bpp or 4 bpp data. See Section 6.2.2.3: Host Data Consumption for the
pixel ordering.

6.2.3.8 Trajectory Modifier 2, DST_POLYGON_EN
The DST_POLYGON_EN affects both lines and blits.

When drawing a line, only a single pixel is drawn per scan line (this only affects X major
lines). Horizontal lines are not drawn. Lines whose trajectory goes left of the left scissor
are saturated to the left scissor.

When blitting, at the beginning of each destination line, an internal polygon fill flag is
reset. If the polygon fill flag is reset, drawing is inhibited at the destination. For each pixel,
an implicit 1 bpp polygon boundary source (this is neither a monochrome nor a color
source, but an implicit third source) is read. If the result is '1' (a polygon edge) the polygon
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-18 Proprietary and Confidential

Background Information
fill flag is toggled. Both left and right edges of the polygon are inclusive. The right edge is
optionally exclusive on the mach64CT family.

6.2.3.9 Trajectory Modifier 3, DP_BYTE_PIX_ORDER
The DP_BYTE_PIX_ORDER@DP_PIX_WIDTH bit affects the pixel order of both 1 bpp
and 4 bpp data within a byte. This affects the source area, destination area, and host data
consumption. When set, left-to-right pixel order proceeds from the least significant bit or
nibble to the most significant bit or nybble within a byte. The bytewise order is unaffected.
See Section 6.2.2.3: Host Data Consumption for the pixel ordering.

6.2.4 Side Effects Of Trajectories

A side effect is a change in the draw engine state after a draw operation has been
completed. Typically, it refers to the trajectory pointers (the source and destination
coordinates).

• The source pointer is always reset to the original SRC_X, SRC_Y after completion of
a draw operation.

• The destination pointer is set according to the DST_X_TILE and DST_Y_TILE bits
after completion of a blit operation. If DST_X_TILE is set, then DST_X =
original_DST_X + DST_WIDTH for left-to-right destination trajectories, or DST_X
= original_DST_X – DST_WIDTH for right-to-left destination trajectories;
otherwise, it is reset to the original DST_X value from before the draw. This is also
applicable for the DST_Y_TILE bit (with DST_Y and DST_HEIGHT).

• For lines, the final DST_X, DST_Y rest on the last pixel of the line. The
LAST_PEL_ON bit specifies whether the last pixel on that line is drawn.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-19

Background Information
6.2.5 Source And Destination Alignment

Sources may have one of two possible alignments:

• Source alignment

• Destination alignment

Source alignment means that the top left corner of the source area is aligned to the top
left corner of the destination area, as illustrated below:

Figure 6-10. Source Alignment

Source Area

First pixel

Destination Area

Blit

Source Alignment
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-20 Proprietary and Confidential

Background Information
Destination alignment to the Nth pixel means that the top left corner of the source area is
aligned to (X mod N)==0 and (Y mod N)==0. There may in fact be different N values for
the horizontal and vertical destination alignment.

Figure 6-11. Destination Alignment

Various sources and their implicit alignments are listed below:

The strict definition of source alignment is that a QWORD (or DWORD depending on
memory type and size) for a source-aligned source is rotated to align with the destination.
No rotation occurs for destination-aligned sources.

Table 6-1 Source Alignment

Source Alignment
DP_FRGD_CLR Destination aligned
DP_BKGD_CLR Destination aligned
Fixed 8x8 mono pattern Destination aligned X8 Y8
Fixed 4x2 color pattern Destination aligned X4 Y2
Fixed 8x1 color pattern Destination aligned X8
Mono host Source aligned
Color host Source aligned
Any blit source (strictly linear, unbounded Y, general
pattern, general pattern with rotation) Source aligned

Source Area

First pixel

Destination Area

Blit

(X mod N)==0 (X mod N)==0

(Y mod N)==0

(Y mod N)==0

Destination Alignment
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-21

Background Information
6.2.6 Source and Destination Mixing Logic

A source and destination pixel may be mixed in two ways:

• A logical operation or an averaging function may be performed on the source and
destination to produce a composite pixel. The process may be referred to as an ALU
function, a mix function, or a ROP (raster operation).

• The color source pixel (before ALU processing) or the destination pixel can be
compared to a color compare register. If the result is FALSE, the result of the ALU is
written; otherwise, the destination pixel is written back to the destination (no pixel is
drawn). In this manner, the source pixel can be selectively inhibited from writing to
the destination.

ALU functions and compare functions may be used at the same time, but the ALU will
only operate on pixels for which the compare function returns FALSE.

The available mix functions and compare functions are listed in the tables below. The
ALU will mix the source and destination data with any of the functions listed. More
complex functions may be accomplished with multiple passes.

The comparison functions compare a color register against the destination data at the
current pixel.

• If the result of the comparison is FALSE, the result of the ALU is written to the
destination; otherwise, the destination data is written to the destination.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-22 Proprietary and Confidential

Background Information
Table 6-2 Mix and Comparison Functions

Function 17h additionally requires the DP_CHAIN_MASK register to be set. Each ‘1’ in
the mask will prevent the carry bit from that bit position from adding to the next bit.

6.2.7 Remarks On Pixel Depth

Not all pixel depths are created equal:

• 1 bpp mode is supported by the drawing engine but not by the CRTC. Therefore, 1
bpp mode can only be used in off-screen memory.

• Pitch is normally specified in multiples of 8 pixels. An additional restriction is that it
must also fall on a 64-bit boundary. That implies that pitch for 1 bpp mode must be a
multiple of 64 pixels, and pitch for 4 bpp mode must be a multiple of 16 pixels.

• The DP_BYTE_PIX_ORDER@DP_PIX_WIDTH bit only affects pixel ordering
within a byte. Therefore, only 1 bpp and 4 bpp modes are affected.

• All pixel depths above 8 bpp are direct color modes. 4 bpp and 8 bpp modes are
pseudocolor modes.

• Packed 24 bpp mode is actually 24 bpp CRTC mode and 8 bpp draw mode with

Mix Functions
0 not D
1 0
2 1
3 D
4 not S
5 D xor S
6 (not D) xor S
7 S
8 (not D) or (not S)
9 D or (not S)
A (not D) or S
B D or S
C D and S
D (not D) and S
E D and (not S)
F (not D) and (not S)
17 (D+S) >> 1

Comparison Functions
0 FALSE
1 TRUE
2 Reserved
3 Reserved
4 Pixel != CLR_CMP_COLOR
5 Pixel == CLR_CMP_COLOR
6 Reserved
7 Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-23

Draw Operations
special rotations done on DP_FRGD_CLR, DP_BKGD_CLR, DP_WRITE_MASK,
and fixed 8x8 mono patterns. See Drawing in Packed 24 Bit Per Pixel Mode in
Section 6.4.1.

• DP_CHAIN_MASK must be manually set for the destination pixel depth (this
register only affects the mix function 17h, the averaging function). The following
table lists the settings:

• 15 bpp and 16 bpp modes are identical draw modes, but different DAC modes must be
set (use BIOS services for mode switching so the application does not have to handle
it). 15 bpp mode is always RGB 555, and 16 bpp mode is always RGB 565.

• Although pixel depths for source area, destination area, and host may be set
independently, the only pixel depth conversion available is 1 bpp to any pixel depth
monochrome expansion. Behavior is undefined for any other mixing and matching of
pixel depths.

6.3 Draw Operations

This section provides specific examples of how to set up the mach64 engine for various
trajectories. Section 6.2.1 demonstrates how to set up the destination trajectory and
initiate the draw operation. Section 6.2.2 demonstrates how to set up the four basic types
of source trajectory. The remaining two sections show various useful draw operations.

6.3.1 Color Source

The solid color source is the simplest form of source data. The color for drawing the line
or rectangle comes from DP_FRGD_CLR alone. This is done by setting the mono source
to always ‘1’. The destination trajectory registers must also be set.

Table 6-3 DP_CHAIN_MASK Setting

Pixel Depth DP_CHAIN_MASK
1 bpp N/A

4 bpp pseudocolor 0x8888
8 bpp 0x8080

15 bpp, aRGB 1555 0x4210
16 bpp, RGB 565 0x8410
24 bpp, RGB 888 0x8080

32 bpp, RGBa 8888 0x8080
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-24 Proprietary and Confidential

Draw Operations
6.3.1.1 Drawing Lines
Line draws are performed using an 18-bit Bresenham line draw engine.

To draw a line:

1. Set up the draw context with either a context load or many register writes.

2. Determine the direction octant so that the line trajectory will be drawn and set the
DST_X_DIR, DST_Y_DIR and DST_Y_MAJOR bits accordingly. Also set the
LAST_PEL_ON bit as desired (this bit only determines whether the last pixel in the
line is drawn; it has no effect on the actual DST_X, DST_Y trajectory).

 From the start and endpoints of the line, calculate all the Bresenham parameters and
write them out to the registers.

DST_BRES_ERR = 2 * min(|dx|,|dy|) - max(|dx|,|dy|)
DST_BRES_INC = 2 * min(|dx|,|dy|)
DST_BRES_DEC = 2 * [min(|dx|,|dy|) - max(|dx|,|dy|)]

3. Write out the desired number of pixels drawn to DST_BRES_LNTH.

Example Code for Drawing Lines (normal or polygon outline)
//

// DrawLine - draw a line from (x1, y1) to (x2, y2)

//

// The drawing of the last pixel in the line is determined by

// the current setting of the DST_CNTL register (LAST_PEL bit).

// The engine does not support lines in 24 bpp modes.

void DrawLine (short x1, short y1, short x2, short y2)

{

short dx, dy;

long minDelta, maxDelta;

short x_dir, y_dir, y_major;

dx = abs(x2 - x1);

dy = abs(y2 - y1);

minDelta = __min(dx,dy);

maxDelta = __max(dx,dy);

Line drawing is not supported in packed 24 bpp modes.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-25

Draw Operations
// Determine the octant.

if (x1 < x2) x_dir = 1;

else x_dir = 0;

if (y1 < y2) y_dir = 0x0802;// use top/bottom for Bresenham

// zero sign convention

else y_dir = 0;

if (dx < dy) y_major = 4;

else y_major = 0;

// Assume that the context registers have already been set up

// somewhere else.

// Set the line trajectory registers and initiate.

WaitForFifo(6);

// The register read of DST_CNTL is not FIFOed, so the application

// must guarantee that there isn't a DST_CNTL somewhere in the

// write FIFO.

// If the application cannot guarantee this, then the

// application must provide a known value for DST_CNTL or

// insert a WaitForIdle() here (a wait_for_idle will slow

// overall performance).

WaitForIdle();

regw(DST_CNTL,(regr(DST_CNTL) & ~0x7) |

(ULONG)(y_major | y_dir | x_dir));

regw(DST_Y_X, ((ULONG)x1 << 16) | y1);

regw(DST_BRES_ERR, 2 * minDelta - maxDelta);

regw(DST_BRES_INC, 2 * minDelta);

regw(DST_BRES_DEC, 2 * (minDelta - maxDelta));

regw(DST_BRES_LNTH, maxDelta + 1);

}

RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-26 Proprietary and Confidential

Draw Operations
6.3.1.2 Drawing Rectangles
Drawing rectangles is one of the simplest of the mach64 operations. It is also quite
versatile. Below is a sample routine to draw a rectangle. You will notice that the source is
not specified in the routine itself. This allows the routine to be used for solid rectangles or
pattern filled rectangles. The source registers to draw a solid rectangle is given here in the
main routine. Note that 24bpp is not supported in this example, but is in the SDK sample
code.

Example Code for Drawing Solid Rectangles
//main rectangle draw

//assume engine is initialized and mode is already set

int rcolor; //color of rectangle

int rx; //top left x coordinate of rectangle

int ry; //top left y coordinate of rectangle

int rwidth; //width of rectangle

int rheight; //height of rectangle

WaitForFifo(2);

regw(DP_FRGD_CLR, get_color_code(rcolor);

regw(DP_SRC, BKGD_SRC_BKGD_CLR | FRGD_SRC_FRGD_CLR |

MONO_SRC_ONE);

draw_rect(rx, ry, rwidth, rheight);

//end of main code

void draw_rect (int x, int y, int width, int height)

{

WaitForFifo (4);

// perform rectangle fill

regw (DST_X, (unsigned long) x);

regw (DST_Y, (unsigned long) y);

regw (DST_HEIGHT, (unsigned long) height);

regw (DST_WIDTH, (unsigned long) width);

}

Two more examples demonstrate drawing a rectangle filled with solid color data and with
data provided through the HOST_DATA registers.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-27

Draw Operations
Example Code for Initiating a Solid Rectangle Fill

// Setup the draw engine context manually.

WaitForFifo(12);

regw(DP_FRGD_CLR, 0xFFFFFFFF); // white

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp

// Note: Background mix should be set to leave_alone when not

// being used (mono source is always_'1') because this is one

// of the conditions for block write to be enabled.

// If the memory supports block write, the rectangle fill will

// draw much faster.

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000100); // mono:always_'1',

// frgd:DP_FRGD_CLR

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(GUI_TRAJ_CNTL, 0x00000003); // left-to-right,
top-to-bottom

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to 1023

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to 1023

// Setup the draw trajectory and initiate (write DST_OFF_PITCH

// first).

regw(DST_OFF_PITCH, ((ULONG)pitch << 22) | offset);

regw(DST_Y_X, ((ULONG)x << 16) | y);

regw(DST_HEIGHT_WIDTH, ((ULONG)width << 16) | height);

Example Code for Initiating a Rectangle Filled with Host Data
// Setup the draw engine context manually.

WaiForFifo(12);

regw(DP_FRGD_CLR, 0xFFFFFFFF); // white

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp

// If the foreground mix for a color host operation is set to

// paint (7), you might as well use the aperture because it

// would be faster.

// It is only worthwhile to use host operations when the ALU

// function is not trivial, or for monochrome host operations.

regw(DP_MIX, 0x00050003); // frgd:xor, bkgd:leave_alone

regw(DP_SRC, 0x00000200); // mono:always_'1',
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-28 Proprietary and Confidential

Draw Operations
// frgd:color_host

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(GUI_TRAJ_CNTL, 0x00000003); // left-to-right,
top-to-bottom

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to 1023

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to 1023

// Setup the draw trajectory and initiate (write DST_OFF_PITCH

// first).

regw(DST_OFF_PITCH, ((ULONG)pitch << 22) | offset);

regw(DST_Y_X, ((ULONG)x << 16) | y);

regw(DST_HEIGHT_WIDTH, ((ULONG)width << 16) | height);

// Calculate the amount of data to output.

numberOfPixels = (ULONG)width * height;

numberOfDwords = numberOfPixels / pixelsPerDword;

if ((numberOfPixels % pixelsPerDword)!=0) numberOfDwords++;

// Output host data.

for (i=0; i<numberOfDwords*pixelsPerDword; i+=pixelsPerDword) {

// This inner loop can be optimized to burst in data 16 DWORDs

// at a time. Only one DWORD is written at a time for

// simplicity. When bursting in data, first wait for 16

// free FIFO entries, then use REP MOVSD to HOST_DATA0

// through HOST_DATA16

WaitForFifo(1);

// Output 4 pixels of 8 bpp (byte) data in left-to-right

// order.

regw(HOST_DATA0, pixel[i] | ((ULONG)pixel[i+1] << 8)

| ((ULONG)pixel[i+2] << 16)

| ((ULONG)pixel[i+3] << 24));

}

// If too much data is written, the extra data will be ignored.

// If not enough data is written, then the next write to a FIFOed

// register other than a HOST_DATA register will cause the
draw

// engine to panic, i.e. the rectangle fill will complete with

// a garbage color.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-29

Draw Operations
It is left as an exercise for the programmer to fill a rectangle with monochrome host data
(set DP_MONO_SRC@DP_SRC to “host data” and set DP_FRGD_SRC@DP_SRC and
DP_BKGD_SRC@DP_SRC to any two valid color sources except for “host data”, i.e. not
color_host).
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-30 Proprietary and Confidential

Draw Operations
6.3.2 Standard BitBlt Source

A bitblt is a rectangle fill that specifically uses a color blit source. There are four types of
blit source trajectory, as described in Section 6.2.3: Trajectories. Note that the source
trajectory direction always tracks the destination trajectory direction. Blit sources are
always source-aligned.

6.3.2.3 Simple 1 to 1
The DP_SRC register specifies the simple 1-1 bitblit. It is also important to set the
SRC_CNTL to unbounded y (simple 1-1 bitblit).

Example Code for Initiating a Simple Blit (Unbounded Y)

// Use an unbounded Y source trajectory to do a rectangular blit.

// Set up the context manually.

WaitForFifo(7);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp (depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint,

// bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to write SRC_OFF_PITCH

// and SRC_CNTL first).

WaitForFifo(8);

regw(SRC_OFF_PITCH, 0x20000000); // pitch:1024(depends on

// mode),offset:0

regw(SRC_CNTL, 0x00000000); // unbounded Y

regw(SRC_Y_X, (srcX << 16) | srcY);

regw(SRC_WIDTH1, srcWidth);

// Set up the destination trajectory and initiate blit (write

// DST_OFF_PITCH first).

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, (dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, (dstWidth << 16) | dstHeight);
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-31

Draw Operations
6.3.2.4 General Pattern
Using General Pattern source implies that the source and destination are different sizes.
SRC_CNTL is now set to general pattern.

Example Code for Initiating a Rectangle Filled with a General 2D Pattern
// Use a general pattern source trajectory to fill a rectangle

// with an area pattern.

// The source area should be smaller than the destination area for

// a visible effect.

// Set up the context manually.

WaitForFifo(7);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yes

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp (depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to write SRC_OFF_PITCH

// and SRC_CNTL first).

WaitForFifo(8);

regw(SRC_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(SRC_CNTL, 0x00000001); // general pattern

regw(SRC_Y_X, ((ULONG)srcX << 16) | srcY);

regw(SRC_HEIGHT1_WIDTH1, ((ULONG)srcWidth << 16) | srcHeight);

// Set up the destination trajectory and initiate blit (write

// DST_OFF_PITCH first).

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, ((ULONG)dstWidth << 16) | dstHeight);
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-32 Proprietary and Confidential

Draw Operations
6.3.2.5 General Pattern With Rotation
General pattern with rotation is similar to general pattern, but allows for pattern
alignment. This requires a few extra registers to be set.

Example Code for Initiating a Rectangle Filled with a Rotated 2D Pattern

// Use a general pattern source trajectory to fill a rectangle

// with a rotated area pattern.

// The source area should be smaller than the destination area for

// a visible effect.

// Set up the context manually.

WaitForFifo(7);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

regw(DP_WRITE_MASK, 0xFFFFFFFF);// enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp (depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to write SRC_OFF_PITCH

// and SRC_CNTL first).

// srcXStart and srcYStart denote the top left corner of the
pattern

// srcX and srcY offset into that pattern

// srcWidth2 and srcHeight2 specify the pattern size

// srcWidth1 and scrHeight1 specify the size of the rectangle
bound

// by srcX,

// srcY, and the bottom right corner of the pattern

WaitForFifo(10);

regw(SRC_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(SRC_CNTL, 0x00000003); // general pattern with rotation

regw(SRC_Y_X_START, ((ULONG)srcXStart << 16) | srcYStart);

regw(SRC_HEIGHT2_WIDTH2, ((ULONG)srcWidth << 16) | srcHeight);

regw(SRC_Y_X, ((ULONG)srcX << 16) | srcY);

regw(SRC_HEIGHT1_WIDTH1, ((ULONG)(srcXStart+srcWidth-srcX) <<

16) | (srcYStart+srcHeight-srcY));
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-33

Draw Operations
// Set up the destination trajectory and initiate blit (write

// DST_OFF_PITCH first).

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, ((ULONG)dstWidth << 16) | dstHeight);

6.3.2.6 Strictly Linear
A very simple source is the strictly linear source. The following code is very
straightforward.

Example Code for Initiating a Blit with a Linear Source

// Use a linear source trajectory to fill a rectangle.

// The source area would usually be packed in an offscreen

// memory area.

// Set up the context manually.

WaitForFifo(7);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

regw(DP_WRITE_MASK, 0xFFFFFFFF);// enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp (depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to set SRC_WIDTH1 to

// a non-zero value).

WaitForFifo(7);

regw(SRC_OFF_PITCH, 0x20000000 | offset); //
pitch:1024(depends

// on mode)

regw(SRC_CNTL, 0x00000004); // linear

// Set up the destination trajectory and initiate blit (write

// DST_OFF_PITCH first).

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-34 Proprietary and Confidential

Draw Operations
regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, ((ULON G)dstWidth << 16) | dstHeight);

6.3.3 Specialized BitBlt Source

The following examples show various examples of bitblt source while exercising the
various capabilities of the color expansion circuitry in the mach64 engine.

6.3.3.1 Monochrome Expansion
Monochrome expansions are especially useful for font caching. Monochrome expansion
bitblits are very efficient in terms of storing the source information. Not only is the
information packed into a linear segment of memory, but each on-screen pixel only uses
one bit to store its information.

Example Code for Initiating a Monochrome Expansion Blit

// Assume that there is monochrome data (eg text) stored linearly

// in off-screen memory. The data is to be expanded to a
foreground

// color, the background is to be transparent.

// Set up the context manually.

WaitForFifo(8);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to 1023

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to 1023

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all bit planes

regw(DP_FRGD_CLR, 0xFFFFFFFF); // white

regw(DP_PIX_WIDTH, 0x00020002); // SRC:1 bpp,

// DST:8bpp(depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00030100); // mono:blit,

// frgd:DP_FRGD_CLR

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to set SRC_WIDTH1 to

// a non-zero value).

WaitForFifo(7);

regw(SRC_OFF_PITCH, 0x20000000 | offScreenOffset); //
pitch:1024

regw(SRC_CNTL, 0x00000004); // linear
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-35

Draw Operations
// Set up the destination trajectory and initiate blit.

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, ((ULONG)dstWidth << 16) | dstHeight);

6.3.3.2 General Pattern Lines
When the destination trajectory is a line, the source trajectory behaves in almost the same
fashion as for a rectangular destination trajectory. The only differences are:

• The source trajectory never advances in the Y direction (the source height is
implicitly equal to one).

• The source trajectory X direction is independent of the destination X direction, and
can be set by the SRC_LINE_X_DIR@SRC_CNTL.

Example Code for Drawing Lines With a General Pattern

// Use a general pattern source to do a line pattern. Note that

// the source does not advance in the Y direction when the

// destination is a line.

// Set up the context manually.

WaitForFifo(7);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp (depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x00000000); // disable

// Set up the source trajectory (remember to write SRC_OFF_PITCH

// and SRC_CNTL first).

WaitForFifo(11);

regw(SRC_OFF_PITCH, 0x20000000 | offset); // pitch:1024(depends

// on mode)

regw(SRC_CNTL, 0x00000001); // general pattern

regw(SRC_Y_X, ((ULONG)srcX << 16) | srcY);

regw(SRC_HEIGHT1_WIDTH1, ((ULONG)pattLength << 16) | 1);
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-36 Proprietary and Confidential

Draw Operations
// Draw the line.

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on

// mode), offset:0

regw(DST_CNTL, octant | lineOptions);

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_BRES_ERR, dstBresErr);

regw(DST_BRES_INC, dstBresInc);

regw(DST_BRES_DEC, dstBresDec);

regw(DST_BRES_LNTH, lineLength);

6.3.3.3 Transparent BitBlts
A transparent blit is simply a blit where a designated color (background color) from the
source is inhibited from being drawn to the destination. This kind of blit is useful for
copying odd-shaped objects onto a bitmapped background (games, for example). A simple
blit with source compare enabled will do a transparent blit.

Example Code for a Transparent Blit

// Use a linear source trajectory with a transparent color to fill

// a rectangle.

// The source area would usually be packed in an offscreen memory

// area.

// Set up the context manually.

WaitForFifo(9);

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all bit planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp(depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000300); // mono:always_'1', frgd:blit

regw(CLR_CMP_CNTL, 0x01000005); // source compare, equality

regw(CLR_CMP_MASK, 0xFFFFFFFF); // enable all planes for

// comparison

regw(CLR_CMP_CLR, transparentColor); // color to be transparent

// Set up the source trajectory (remember to set SRC_WIDTH1 to a

// non-zero value).

WaitForFifo(7);
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-37

Draw Operations
regw(SRC_OFF_PITCH, 0x20000000 | offset); // pitch:1024(depends

// on mode)

regw(SRC_CNTL, 0x00000004); // linear

// Set up the destination trajectory and initiate the blit.

regw(DST_OFF_PITCH, 0x20000000); // pitch:1024(depends on
mode),

// offset:0

regw(DST_CNTL, 0x00000003); // left-to-right, top-to-bottom

regw(DST_Y_X, ((ULONG)dstX << 16) | dstY);

regw(DST_HEIGHT_WIDTH, ((ULONG)dstWidth << 16) | dstHeight);

6.3.4 Pattern Source

Pattern sources derive their pixel data from the contents of the pattern registers
PAT_REG0 and PAT_REG1.

6.3.4.1 Fixed Patterns
Three types of fixed pattern are available:

• 4x2 color pattern.

• 8x1 color pattern.

• 8x8 monochrome pattern.

The fixed color patterns are only supported in 8 bpp mode. Fixed patterns are always
destination-aligned. See Section 6.2.2 for a depiction of pattern consumption. he
destination draw trajectories in the following code can be replaced by the draw rectangle
routine or line draw routine in Section 6.3.1. The important registers to set are the
PAT_CNTL (in union with GUI_TRAJ_CNTL) and PAT_REGs.

Example Code for Rectangle Fills Using Fixed Patterns

// 8x8 mono pattern

// Setup the draw engine context manually.

WaitForFifo(12);

regw(DP_FRGD_CLR, 0xFFFFFFFF); // white

regw(DP_BKGD_CLR, 0x00000000); // black

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp(depends on mode)

regw(DP_MIX, 0x00070007); // frgd:paint, bkgd:paint
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-38 Proprietary and Confidential

Draw Operations
regw(DP_SRC, 0x00010100); // mono:pattern,

// frgd:DP_FRGD_CLR,

// bkgd:DP_BKGD_CLR

regw(PAT_REG0, patternData0); // pattern data

regw(PAT_REG1, patternData1); // pattern data

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(GUI_TRAJ_CNTL, 0x01000003); // enable 8x8 mono patterns

// left-to-right, top-to-bottom

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

// Setup the draw trajectory and initiate.

WaitForFifo(3);

regw(DST_OFF_PITCH, ((ULONG)pitch << 22) | offset);

regw(DST_Y_X, ((ULONG)x << 16) | y);

regw(DST_HEIGHT_WIDTH, ((ULONG)width << 16) | height);

// 4x2 color pattern

// Setup the draw engine context manually.

WaitForFifo(13);

regw(DP_WRITE_MASK, 0xFFFFFFFF);// enable all planes

regw(DP_PIX_WIDTH, 0x00020202); // 8 bpp(depends on mode)

regw(DP_MIX, 0x00070003); // frgd:paint, bkgd:leave_alone

regw(DP_SRC, 0x00000400); // mono:always_'1', frgd:pattern

regw(PAT_REG0, patternData0); // pattern data

regw(PAT_REG1, patternData1); // pattern data

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(GUI_TRAJ_CNTL, 0x02000003); // enable 4x2 color patterns

// left-to-right, top-to-bottom

regw(SC_LEFT_RIGHT, 0x03FF0000); // 0 to >= xres

regw(SC_TOP_BOTTOM, 0x03FF0000); // 0 to >= yres

// Setup the draw trajectory and initiate.

regw(DST_OFF_PITCH, ((ULONG)pitch << 22) | offset);

regw(DST_Y_X, ((ULONG)x << 16) | y);

regw(DST_HEIGHT_WIDTH, ((ULONG)width << 16) | height);

The 8x1 color pattern is left as an exercise for the programmer.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-39

Miscellaneous Operations
6.4 Miscellaneous Operations

6.4.1 Drawing In Packed 24 Bit Per Pixel Mode

There is no 24-bit packed draw engine mode, but there is a 24-bit packed display mode.
Drawing in this mode is accomplished by setting the engine in 8 bit per pixel mode and
manipulating the DST_24_ROT and DST_24_ROT_EN bits. The following rules must be
followed for drawing in this mode:

• Source and destination pitches must be set to three times the display pitch.

• All X coordinates and widths must be specified at three times the normal value.
Remember that left-to-right operations begin on an R value, and right-to-left
operations begin on a B value. That means that for left-to-right operations, the initial
DST_X is expressed as (X * 3) and for right-to-left DST_X is (X * 3 + 2).

• Before any draw operation is initiated, the DST_24_ROT_EN@DST_CNTL must be
enabled, and DST_24_ROT@DST_CNTL must be set to ((DST_X / 4) mod 6), where
DST_X is the starting DST_X value as described above.

In the above table:

• X is the desired X coordinate in packed 24 bpp mode.

• DST_X is the value that you actually write to the draw engine (remember to start on
an R component on left-to-right operations, and on a B component for right-to-left
operations).

• The DWORD and color components rows show how memory is actually laid out in
relation to pixel data.

• The DST_24_ROT row shows the value to place in the DST_24_ROT@DST_CNTL
field before initiating a draw operation. Use the leftmost DST_24_ROT number in the

DST_X (8 bpp)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

X (24 bpp)
0 1 2 3 4 5 6 7 8

DWORD
0 1 2 3 4 5 6

DST_24_ROT Value
0 0 0 1 1 2 2 2 3 3 3 4 4 5 5 5 0 0

COLOR COMPONENTS
R G B R G B R G B R G B R G B R G B R G B R G B R G B R
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-40 Proprietary and Confidential

Miscellaneous Operations
column for left-to-right operations, and the rightmost number for right-to-left
operations.

• The DST_24_ROT value is simply the (DWORD-value-of-the-starting-byte mod 6).

Notes:

• The rotation enable bit only affects DP_FRGD_CLR, DP_BKGD_CLR,
DP_WRITE_MASK, and fixed 8x8 mono patterns. Colors and masks are rotated
appropriately, keying on the DST_24_ROT value.

• The line draw engine does not function in 24 bpp packed mode.

• Any other monochrome source other than fixed 8x8 monochrome patterns are only
supported if the application sets up that monochrome source such that each bit in the
monochrome source is expanded to 3 bits (one for each of R, G, and B).

• Polygons are only supported if the host manually draws the polygon boundary lines,
only drawing one pixel component (the leftmost one -- R) per scan line, as opposed to
one pixel per scan line.

Example Code for Drawing a Solid Rectangle in Packed 24 Bit Mode

// This procedure will fill a packed 24 bpp rectangle with a

// 24 bit color.

VIOD FillRect24(x, y, width, height, color)

short x,y;

USHORT width, height;

ULONG color;

{

USHORT rotation;

// Setup the draw engine context manually.

 WaitForFifo(12);

regw(DP_FRGD_CLR, color); // set rectangle color

regw(DP_WRITE_MASK, 0x00FFFFFF); // enable all planes

regw(DP_PIX_WIDTH, 0x00020202); // must be set to 8 bpp

regw(DP_MIX, 0x00070003); // frgd:paint,

// bkgd:leave_alone

 regw(DP_SRC, 0x00000100); // mono:always_'1',

// frgd:DP_FRGD_CLR

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(SC_LEFT_RIGHT, 0x0BFF0000); // 0 to (1024 * 3 - 1)

regw(SC_TOP_BOTTOM, 0x0BFF0000); // 0 to (1024 * 3 - 1)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-41

Miscellaneous Operations
 // Calculate the initial rotation factor (this is for
left-to-right;

 // to do right-to-left, calculate ((x * 3 + 2) / 4) % 6)).

 rotation = ((x * 3) / 4) % 6;

 // Setup the draw trajectory and initiate.

 regw(DST_CNTL, 0x00000083 | (rotation << 8)); //
left-to-right

 // top-to-bottom

 // rotation enabled

 regw(DST_OFF_PITCH, (((ULONG)pitch * 3) << 22) | offset);

 regw(DST_Y_X, (((ULONG)x * 3) << 16) | y);

 regw(DST_HEIGHT_WIDTH, (((ULONG)width * 3) << 16) | height);

}

6.4.2 Scissoring and Masking

Drawing may be inhibited outside a rectangular region by setting the scissor registers —
SC_LEFT, SC_RIGHT, SC_TOP, and SC_BOTTOM. Scissors are inclusive on all edges.
Therefore, to include the whole screen, left and top scissors should be set to 0, and right
and bottom scissors should be set to (xres - 1) and (yres - 1) respectively. Note that a
scissored draw operation draws at the same speed as an unscissored one. Drawing
behavior is undefined for any objects drawn outside the device coordinate space, whether
they are scissored or not. The device coordinate space is –4096 to +4095 in the X
direction, and –16384 to +16383 in the Y direction.

Bits within a particular pixel may be selectively inhibited by setting the
DP_WRITE_MASK register. This function can be useful for manipulating (or leaving
alone) a pixel alpha channel.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-42 Proprietary and Confidential

Miscellaneous Operations
6.4.3 Hardware Cursor

The mach64 hardware cursor is similar in function to the mach32 hardware cursor. Each
cursor pixel is defined by a 2-bit field with the definition below:

Cursor pitch is always 64 pixels. That is, each scan line of the hardware cursor definition
is defined with 64*2 bits (16 bytes) of data, regardless of the actual cursor width. The
pixel definition is specified in Intel order. The first pixel is defined in the low-order 2 bits
of the low-order byte in memory. Each cursor scan line definition resides back-to-back in
memory.

Cursor colors are defined by CUR_CLR0 and CUR_CLR1. Note that for pseudo color
modes, the colors are specified in color indices, and for direct color modes, the colors are
specified in 24-bit true color. The meaning of other registers is illustrated below:

Figure 6-2. Hardware cursor position

Pixel Value Meaning
00 Cursor color 0
01 Cursor color 1
10 Transparent

11
Complement - Note that in pseudocolor modes, some mach64 board
implementations will complement the index and others will complement
the LUT lookup value.

Note that if the DAC supports a hardware cursor, it is preferable to use the
DAC's cursor. Consult the manufacturer's DAC specification for programming
information.

Actual
Displayed

CursorCUR_HORZ_OFFSET

CUR_VERT_OFFSET

64 lines

64 pixels
CUR_OFFSET
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-43

Miscellaneous Operations
The screen position of the top left corner of the displayed cursor is specified by
CUR_HORZ_VERT_POSN. Care must be taken when the cursor hot spot is not the top
left corner and the physical cursor position becomes negative. The mach64 will not
display the cursor at all if either the horizontal or vertical cursor position is negative.

• If X becomes negative, the cursor manager must adjust the CUR_HORZ_OFFSET to
a larger number and saturate CUR_HORZ_POSN to zero.

• If Y becomes negative, CUR_VERT_OFFSET must be adjusted to a larger number,
CUR_OFFSET must be adjusted to point to the appropriate line in the cursor
definition, and CUR_VERT_POSN must be saturated to zero.

Example Code for Enabling, Disabling and Moving the Hardware Cursor
//

// EnableHWCursor - turn on the hardware cursor

VOID EnableHWCursor(VOID)

{

 iow16(GEN_TEST_CNTL, GEN_TEST_CNTL_0,

 ior16(GEN_TEST_CNTL, GEN_TEST_CNTL_0) | 0x80);

}

// ---

// DisableHWCursor - turn off the hardware cursor

VOID DisableHWCursor(VOID)

{

 iow16(GEN_TEST_CNTL, GET_TEST_CNTL_0,

 ior16(GEN_TEST_CNTL, GEN_TEST_CNTL_0) & (~0x80L));

}

//

// SetHWCursorPos - set the hardware cursor position relative to

// hotspot

// It is assumed that the cursor has been previously defined

// linearly in off-screen memory with a pitch of 64 pixels (16

// bytes, or 2 QWORDs).

// CUR_OFFSET = QWORD offset of cursor definition in graphics

// memory

// CUR_HORZ_OFF = 64 - cursorWidth

// CUR_VERT_OFF = 64 - cursorHeight

VOID SetHWCursorPos(short x, short y)

{

 USHORT curHorzOff, curVertOff;
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-44 Proprietary and Confidential

Miscellaneous Operations
 ULONG curOffset;

 static BOOL prevViolation=FALSE;

 BOOL violation = FALSE;

 curOffset = cur.offset;

 // Check for coordinate violations.

 if ((x - cur.hotSpot.x) < 0) {

 curHorzOff = 64 - cur.width - (x - cur.hotSpot.x);

 x = 0;

 violation = TRUE;

 } else curHorzOff = 64 - cur.width;

 if ((y - cur.hotSpot.y) < 0) {

 curVertOff = 64 - cur.height - (y - cur.hotSpot.y);

 curOffset = cur.offset + (cur.hotSpot.y - y) * 2;

 y = 0;

 violation = TRUE;

 } else curVertOff = 64 - cur.height;

 if (violation || prevViolation) {

 regw(CUR_OFFSET, curOffset);

 regw(CUR_HORZ_VERT_OFF, ((ULONG)curVertOff << 16) |

 curHorzOff);

 }

 prevViolation = violation;

 // Set the cursor position.

 regw(CUR_HORZ_VERT_POSN, ((ULONG)y << 16) | x);

}

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 6-45

Miscellaneous Operations
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
6-46 Proprietary and Confidential

Chapter 7
Advanced Topics

7.1 Introduction
This chapter contains several advanced topics on using the mach64.

7.2 Polygons
The mach64 uses an alternate-fill algorithm for polygon filling. Polygon fills are simply
rectangle fills with the DST_POLYGON_EN@DST_CNTL bit set. At the beginning of
each destination scan line, an internal polygon fill flag is reset. Whenever this flag is in a
reset state, drawing is inhibited. The polygon boundary source (this source is implicit and
is established by using the blit source registers) is consumed, providing polygon boundary
data. Whenever a polygon edge is detected, the internal polygon fill flag is toggled. Only
rectangular destinations proceeding in a left-to-right and top-to-bottom direction are
supported for polygon filling.

Polygon edges are inclusive on both left and right sides when filling. On the mach64CT,
the right edge may be optionally inclusive or exclusive.

Note that any monochrome or color sources may be selected in the pixel data path except
for blit sources (because the blit source registers are used to configure the polygon source
trajectory) when polygon filling. Polygon boundary source is only meaningful when
configured to 1 bpp pixel depth (set this with
DP_SRC_PIX_WIDTH@DP_PIX_WIDTH).

Polygon boundaries are created by drawing lines in 1 bpp mode with the
DST_POLYGON_EN@DST_CNTL bit set. This bit causes a maximum of one pixel per
scan line to be drawn (horizontal lines are not drawn at all), and lines exceeding the left
scissor boundary are saturated to the left scissor. Note that the pitch for the 1 bpp polygon
outlines must be aligned along 64-pixel boundary.

To draw a polygon:

1. Clear the off-screen area where the 1 bpp polygon outlines are to be drawn.

2. Set the mix to XOR (this takes care of the degenerate case where two polygon
boundary lines culminate in a vertical peak), enable the DST_POLYGON_EN bit,
and draw all the polygon outline lines in 1 bpp from top to bottom with
LAST_PEL_OFF.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-1

Polygons
3. Set up the blit source registers to point to the polygon outline area.

4. Fill the polygon bounding rectangle.

Example Code for Drawing a General Polygon

// Procedure to draw a polygon from a set of vertices. It is

// assumed that the vertices form an open-ended polygon (which

// will be closed by the procedure).

typedef struct tagPOINT {

 short x,y;

} POINT;

typedef struct tagBOX {

 short x, y;

 USHORT width, height;

} BOX;

// This routine will fill a polygon with a solid color. The host

// application may in fact use any mono/color source combination

// except for blit sources.

VOID DrawPolygon(lpPoints, nPoints, color)

POINT lpPoints[]; // list of vertices

USHORT nPoints; // number of vertices

ULONG color; // color to fill the polygon with

{

BOX bound;

USHORT pitch, i, nextPoint;

// First get the bounding box of the polygon vertices.

GetBoundingBox(lpPoints, nPoints, &bound);

// Calculate 1 bpp pitch.

pitch = bound.width / 8;

if ((bound.width % 8)!=0) pitch++; // round up nearest

// multiple of 8

while ((pitch % 8)!=0) pitch++; // in 1 bpp mode, pitch

// must be a multiple

// of 64 pixels
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-2 Proprietary and Confidential

Polygons
// Clear a 1 bpp area of off-screen memory.

WaitForFifo(11);

regw(GUI_TRAJ_CNTL, 0x00000003); // left-to-right,

// top-to-bottom

regw(DP_WRITE_MASK, 0xFFFFFFFF); // enable all planes

regw(DP_PIX_WIDTH, 0x00000000); // 1 bpp

regw(DP_MIX, 0x00010001); // frgd:zero

regw(DP_SRC, 0x00000100); // mono:always_'1',

// frgd:DP_FRGD_CLR

regw(CLR_CMP_CNTL, 0x00000000); // disable

regw(SC_LEFT_RIGHT, ((ULONG)(bound.width-1) << 16));

regw(SC_TOP_BOTTOM, ((ULONG)(bound.height-1) << 16));

regw(DST_OFF_PITCH, ((ULONG)pitch << 22) | offScreenOffset);

regw(DST_Y_X, 0x00000000);

regw(DST_HEIGHT_WIDTH, ((ULONG)bound.width << 16) |

 bound.height);

// Set the context for polygon line drawing.

WaitForFifo(3);

regw(DST_CNTL, 0x00000040); // DST_POLYGON_EN,

// DST_LAST_PEL_OFF

regw(DP_MIX, 0x00050005); // D xor S

regw(DP_FRGD_CLR, 0xFFFFFFFF); // white

// Draw the polygon outlines.

for (i=0; i<(nPoints-1); i++) {

nextPoint = (i+1) % nPoints;

// Draw only top to bottom lines.

if (lpPoints[i].y > lpPoints[nextPoint].y) {

DrawLine(lpPoints[nextPoint].x - bound.x,

lpPoints[nextPoint].y - bound.y,

lpPoints[i].x - bound.x,

lpPoints[i].y - bound.y);

} else {

DrawLine(lpPoints[i].x - bound.x,

lpPoints[i].y - bound.y,

lpPoints[nextPoint].x - bound.x,

lpPoints[nextPoint].y - bound.y);

 }
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-3

Polygons
}

// Set the context for the polygon blit.

WaitForFifo(14);

regw(DST_CNTL, 0x00000043); // DST_POLYGON_EN,

// DST_LAST_PEL_OFF

regw(DP_MIX, 0x00070007); // frgd:paint, bkgd:paint

regw(DP_SRC, 0x00000100); // mono:always_'1',

// frgd:DP_FRDG_CLR

regw(DP_PIX_WIDTH, 0x00020002);// src:1 bpp, dst:8 bpp

regw(DP_FRGD_CLR, color); // set polygon color

regw(SC_LEFT_RIGHT,((ULONG)(bound.x+bound.width-1) << 16)

| bound.x);

regw(SC_TOP_BOTTOM,((ULONG)(bound.y+bound.height-1) << 16)

| bound.y);

// Set the source trajectory to point to outline area

// (unbounded Y).

regw(SRC_CNTL, 0x00000000);

regw(SRC_OFF_PITCH, ((ULONG)pitch << 22) | offScreenOffset);

regw(SRC_Y_X, 0x00000000);

regw(SRC_WIDTH1, bound.width);

// Blit it.

regw(DST_OFF_PITCH, ((ULONG)dstPitch << 22) | screenOffset);

regw(DST_Y_X, ((ULONG)bound.x << 16) | bound.y);

regw(DST_HEIGHT_WIDTH, ((ULONG)bound.width << 16)

| bound.height);

}

RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-4 Proprietary and Confidential

Scrolling and Panning
7.3 Scrolling and Panning

Scrolling and panning of the display area to the limits of the draw area can be simply done
by changing the value of CRTC_OFFSET@CRTC_OFF_PITCH.

Note that offset has a granularity of 64 bits, which means that horizontal panning will be
more “jerky” at lower pixel depths than at higher pixel depths.

Example Code for Calculating CRTC_OFFSET from X and Y Coordinates

// A display area shows a window to a larger desktop.

// dispOffset is the QWORD offset to the top left corner of the

// desktop pitch*8 is the width of the desktop in pixels

// x,y is the coordinate pair which offsets into the desktop.

// This desktop coordinate pair will be the top left corner of the

// display region.

// Calculate the new CRTC offset from x,y. X must fall on a QWORD

// boundary.

crtcOffset = dispOffset + (y * pitch*8 + x) / pixelsPerQword;

regw(CRTC_OFF_PITCH, ((ULONG)pitch << 22) | crtcOffset);

7.4 CRT Synchronization and Animation
For smooth animation, it is necessary to inhibit drawing to areas of the screen that are
currently being scanned by the CRT controller. Failure to take necessary precautions will
cause flickering or tearing effects on the animated object. Outlined below are several
possible strategies that can be used for smooth animation.

7.4.1 Double Buffering (Memory)

Two areas of screen memory are allocated, each big enough for an entire display screen.
While one memory area is being displayed, the other is updated, thus avoiding any
collision between the CRTC and the draw engine. The system timer or the CRTC vertical
line counter can be used to generate interrupts at constant time intervals.

In the interrupt service routine:

1. Wait-for-idle to ensure that the draw engine is not in the middle of drawing.

2. Set CRT_OFFSET to toggle to the memory area to display. The display will not
change until the CRTC vertical counter resets to the top of the display area.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-5

CRT Synchronization and Animation
3. Wait for the display to change, i.e. wait for the CRTC vertical counter to reset to
zero. If a CRTC vertical line count interrupt is used, then this step may be omitted.

4. Signal the mainline application that buffers have toggled.

In the mainline application:

1. Disable interrupts.

2. Draw the new frame into the draw buffer area. The application may use its own
strategy to do this, either clearing the draw buffer and drawing from scratch, or
updating the frame deltas.

3. Enable interrupts.

4. Wait for a signal from the interrupt service routine that buffers have toggled.

The buffer switching may also be done in the main line application, and using the system
timer to switch buffers is optional. The advantage to using the system timer is a constant
frame rate.

During application development, the programmer can omit steps 1 and 3 in the mainline to
determine whether or not the desired frame rate can be accomplished. If not, flickering
will occur.

7.4.2 Double Buffering (Palette)

The palette-driven double buffer is just a specialized case of the double buffer scheme
described above. In 8 bpp mode, two memory areas can be allocated and overlaid on top
of each other, each 4 bpp deep. The palette must be defined such that the lower four bits
and the upper four bits specify the same 16 colors. The same algorithm is used as above,
except that DAC_MASK is used to switch the displayed area (instead of
CRTC_OFFSET), and DP_WRITE_MASK is used to write to the non-displayed area
(instead of DST_OFFSET).

7.4.3 Single Buffering (Synchronized)

Simple animations (small update areas) may be accomplished with a single buffer with no
flickering or tearing by refraining from drawing until the CRTC vertical line count is
within a certain range. The vertical line count can be polled by reading
CRTC_CRNT_VLINE@CRTC_VLINE_CRNT_VLINE or it can be interrupt-driven by
setting CRTC_VLINE_INT_EN@CRTC_INT_CNTL and
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-6 Proprietary and Confidential

Manual Mode Switching And Custom CRT Modes
CRTC_VLINE@CRTC_VLINE_CRNT_VLINE. Once the CRTC is scanning the desired
range, the application must attempt to draw all that it must draw before the CRTC scan
encroaches upon the draw area.

This method does not use up that much memory, but cannot update large areas of the
screen without flicker.

Interrupts from the mach64 chip are not recommended because ISA systems cannot share
interrupts, and commonly run out of IRQ levels. Any program that uses interrupts must
have a fall back mechanism for interrupt disabled configurations.

7.4.4 Single Buffering (Delta Framing)

Delta framing is a method of achieving flicker-free animation without CRT
synchronization. Only the changes from one frame to the next are drawn on the screen.
The animation will be flicker-free because no undrawing is ever done. Tearing will occur,
but the effects will be minimal given the draw rate.

1. Calculate the bounding box of a region on the screen that is changing.

2. Construct this region for the next frame in off-screen memory.

3. Blit the region to on-screen.

This method becomes very complex if many (overlapping) regions are changing from one
frame to the next.

7.5 Manual Mode Switching And Custom CRT Modes

7.5.1 Manual Mode Switching

Mode switching by manual means is not recommended. If for some reason this cannot be
avoided, perform the following:

1. mach64 subsystems must always be configured with a non-volatile storage
system for storing mode and monitor information. The application programmer must
detect what kind of non-volatile storage is on board and access it appropriately to
retrieve mode information. The most common configuration uses an EEPROM.
Consult the manufacturer's EEPROM data sheet. See Appendix B, EEPROM Map,
for a possible storage mapping of the EEPROM and section 7.8 for information on
how to access the EEPROM.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-7

Manual Mode Switching And Custom CRT Modes
2. Set the accelerator CRTC using the information retrieved in step 1.

3. Detect the type of DAC used by reading the CONFIG_STAT0 register.
Additional detection may be required for DACs that are upward compatible with the
supported DAC types. Consult the manufacturer's DAC data sheet.

4. Initialize the DAC to the appropriate pixel depth and mode using DAC_CNTL
and DAC_REGS. Consult the appropriate manufacturer's DAC data sheet.

5. Switch from VGA mode to accelerator mode by setting the
CRTC_EXT_DISP_EN bit in the CRTC_GEN_CNTL register.

Additional material suitable for developers of non-DOS operating system drivers is
available from ATI's Developer Relations group. Please call the number on the front of
this manual.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-8 Proprietary and Confidential

Manual Mode Switching And Custom CRT Modes
7.5.2 Designing A Custom CRT Mode

The following illustration shows how the CRTC and overscan registers correspond to an
actual video mode. The actual addressable display area is bounded by H_DISP and
V_DISP. All registers are referenced to the upper left corner of the display area.

Figure 7-1. Actual video mode

The relationships between CRTC and monitor parameters are listed in the following
tables:

Symbol Definitions
PCLK pixel clock rate (Hz)
TPCLK pixel clock period (sec)
HRES horizontal displayed resolution (pixels)
HSYNC horizontal sync rate (Hz)
HFP horizontal front porch (sec)
HBP horizontal back porch (sec)
HSWID horizontal sync width (sec)
HACTIVE horizontal active time (sec)
HBLANK horizontal blank time (sec)

V_SYNC_START

V_SYNC_WIDTH

OVR_WID_RIGHT OVR_WID_LEFT
H_TOTAL

V_DISP

H_DISP

H_SYNC_START H_SYNC_WIDTH

OVR_WID_BOTTOM

OVR_WID_TOP

V_TOTAL

Vertical sync
polarity and
horizontal
sync polarity
are not shown
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-9

Manual Mode Switching And Custom CRT Modes
VRES vertical displayed resolution (pixels)
VSYNC vertical sync rate (Hz)
VFP vertical front porch (sec)
VBP vertical back porch (sec)
VSWID vertical sync width (sec)
VACTIVE vertical active time (sec)
VBLANK vertical blank time (sec)

Monitor Parameter to CRTC Parameter Conversions
H_DISP HRES / 8 - 1
H_TOTAL PCLK / HSYNC / 8 – 0.5
H_SYNC_WID HSWID * PCLK / 8 + 0.5
H_SYNC_STRT (HRES + HFP * PCLK + 0.5) / 8 – 1
V_DISP VRES – 1
V_TOTAL HSYNC / VSYNC – 0.5
V_SYNC_WID VSWID * HSYNC + 0.5
V_SYNC_STRT VRES + VFP * HSYNC – 0.5

Symbol Definitions (Continued)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-10 Proprietary and Confidential

Manual Mode Switching And Custom CRT Modes
Refer to Appendix C, CRTC Parameters for listings of parameters for standard display
modes.

Pixel clocks may be chosen from the ATI18818 clock chip. Refer to Appendix D, Clock
Chip Reference for more details.

Example CRTC Calculation for 640x480 60 Hz Non-interlaced

Given parameters:

Hres = 640

Hsync = 31.469 KHz

Hswid = 3.813 usec

Hfp = 0.953 usec

Vres = 480

Vsync = 59.94 Hz

Vswid = 0.064 msec

Vfp = 0.350 msec

Pclk = 50.35/2 = 25.18MHz(ATI1881X clock chip selection 4)

CRTC Parameter to Monitor Parameter Conversions
HRES (H_DISP + 1) * 8
HSYNC PCLK / (H_TOTAL + 1) / 8
HSWID H_SYNC_WID * 8 / PCLK
HFP (H_SYNC_STRT – H_DISP) * 8 / PCLK
HBP (H_TOTAL – H_SYNC_STRT – H_SYNC_WID) * 8 / PCLK
HBLANK (H_TOTAL – H_DISP) * 8 / PCLK
HACTIVE (H_DISP + 1) * 8 / PCLK
VRES V_DISP + 1
VSYNC HSYNC / (V_TOTAL + 1)
VSWID V_SYNC_WID / HSYNC

VFP (V_SYNC_STRT – V_DISP) / HSYNC

VBP (V_TOTAL – V_SYNC_STRT – V_SYNC_WID) / HSYNC

VBLANK (V_TOTAL – V_DISP / HSYNC

VACTIVE (V_DISP + 1) / HSYNC

Note that PCLK, H_DISP, H_TOTAL, H_SYNC_WID, H_SYNC_STRT,
V_DISP, V_TOTAL, V_SYNC_WID, V_SYNC_STRT, HRES, and VRES
are integer values. All the other parameters are real.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-11

Manual Mode Switching And Custom CRT Modes
Hpol = negative polarity

Vpol = negative polarity

CRTC calculations:

H_TOTAL = (Pclk / Hsync / 8) - 0.5

 = (25.18 MHz / 31.469 KHz / 8) - 0.5

 = 99.52 = 63h

H_DISP = Hres / 8 - 1 = 640 / 8 - 1

 = 79 = 4fh

H_SYNC_STRT = (Hres + Hfp * Pclk + 0.5) / 8 - 1

 = (640 + 0.953 usec * 25.18 MHz + 0.5) / 8 - 1

 = 82.06 = 52h

H_SYNC_WID = (Hswid * Pclk) / 8 + 0.5

 = (3.813 usec * 25.18 MHz) / 8 + 0.5

 = 12.50 = 0ch -> 0ch + 20h (- polarity) = 2ch

V_TOTAL = (Hsync / Vsync) - 0.5

 = (31.469 KHz / 59.94 Hz) - 0.5

 = 524.51 = 20ch

V_DISP = Vres - 1 = 479 = 1dfh

V_SYNC_STRT = Vres + Vfp * Hsync - 0.5

 = 480 + 0.350 msec * 31.469 KHz - 0.5

 = 490.51 = 1eah

V_SYNC_WID = (Vswid * Hsync) + 0.5

 = (0.064 msec * 31.469 KHz) + 0.5

 = 2.51 = 02h -> 02h + 20h (- polarity) = 22h

CLOCK_CNTL = 14h (clock chip selection 4, divide by 2)

Note that the clock chip selection value depends on the type of clock chip used on the
mach64 card.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-12 Proprietary and Confidential

Interrupts
7.6 Interrupts

The mach64 is able to generate hardware interrupts under a variety of conditions:

• Interrupt on command FIFO overflow (BUS_CNTL)

• Interrupt on host data error (BUS_CNTL)

• Interrupt on CRTC vertical blank (CRTC_INT_CNTL)

• Interrupt on CRTC vertical line count == CRTC_VLINE (CRTC_INT_CNTL)

To enable interrupts, the application must follow the steps below:

1. Disable interrupt generation with a CLI instruction.

2. Re-vector the interrupt vector to the interrupt service routine, remembering to
save the old interrupt vector. Prior knowledge of which IRQ line the mach64 board
is wired to is required. Typically, the cascaded IRQ 2 is used (which is actually IRQ
9), so interrupt 0x71 must be re-vectored in the vector table. This particular IRQ
level is not guaranteed and may in fact be another IRQ or disabled altogether.

3. Read the interrupt mask from the 8259 interrupt controller and save it. This value
must be restored on program termination. Enable the appropriate IRQ in the mask
(by zeroing the corresponding bit) and write this value back to the 8259. Remember
that if IRQ 2-cascade is used, both the primary and secondary 8259 interrupt masks
must be programmed (bit 2 of the primary, and bit 1 of the secondary).

4. Enable interrupts with an STI instruction.

5. Clear the appropriate acknowledge bit of the desired interrupt source and enable
the interrupt (in BUS_CNTL or CRTC_INT_CNTL).

In the interrupt service routine:

1. Read the appropriate interrupt status bit to determine what caused the interrupt. If
a cause cannot be found, then chain the interrupt to the old interrupt vector,
otherwise proceed with the appropriate action.

2. Acknowledge the mach64 (BUS_CNTL or CRTC_INT_CNTL).

3. Acknowledge the 8259 interrupt controller. Remember that if IRQ 2-cascade is
used, both primary and secondary controllers must be acknowledged.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-13

Off-Screen Memory Management
To disable interrupts:

1. Disable the mach64 interrupt.

2. Disable interrupts with CLI.

3. Restore the 8259 interrupt masks.

4. Restore the interrupt vector table.

5. Enable interrupts with STI.

7.7 Off-Screen Memory Management
Off-screen memory management is a requirement for any real application that directly
uses the accelerator. Hardware cursor definitions, context save areas, font caches, and
bitmap caches are all kept in off-screen memory. Independent source and destination
pitches and offsets, and a linear source trajectory facilitate implementation of an
off-screen memory manager.

Memory can be allocated in linear chunks, aligned to 64-bit boundaries.

A simple cache manager is shown below:

Example Code for an Off-screen Memory Manager
#define CACHE_INITIALIZE 0x0001

#define CACHE_ZERO 0x0002

typedef struct tagCacheInfo {

ULONG qOffset; // QWORD offset

ULONG qSize; // size in QWORDS

ULONG nPixels; // size in pixels (may be less than Qsize)

BOOL empty; // is item empty or full?

struct tagCacheInfo FAR *nextCache; // next cache item

} CacheInfo;

It is not recommended that interrupts be used in retail software applications
because ISA-based systems tend to be fully loaded with hardware-interruptible

devices, and ISA interrupts are not shareable. Also, some mach64 boards may not
be interrupt configurable. Any application that uses interrupts must have a fall

back mechanism that does not use interrupts (i.e. polling).
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-14 Proprietary and Confidential

Off-Screen Memory Management
// Host application must initialize pixPerQword, pitch,

// cacheQOffset, cacheQSize, cacheQRemain.

USHORT pixPerQword; // pixels per QWORD for the current

// mode

USHORT pitch; // graphics mode pitch

ULONG cacheQOffset; // offset to beginning of cache area

ULONG cacheQSize; // total cache size in QWORDS

ULONG cacheQRemain; // remaining unused cache in QWORDS

CacheInfo *cacheHead=NULL; // pointer to first cache element

CacheInfo *cacheTail=NULL; // pointer to last cache element

char FAR errorString[256]="";// put error messages here

//

// AllocCache

//

// Description:

// Allocate an area in off-screen memory for application usage.

//

// Parameters:

// nPixels Number of pixels requested.

// lpPixels Pointer to pixel data (must be compatible

// with device).

// cFlags Cache flags.

// CACHE_INITIALIZE Load cache just

// allocated with pixel

// data.

// CACHE_ZERO Zero the cache area

// just allocated.

//

// Return value:

// On success, returns the QWORD offset of the cache area

// relative to the base of graphics memory. Returns

// 0xFFFFFFFF if the call failed.

//

// Comments:

// This routine will allocate a cache area rounded up to the

// nearest scan line.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-15

Off-Screen Memory Management
ULONG AllocCache(nPixels, lpPixels, cFlags)

ULONG nPixels;

VOID HUGE *lpPixels;

USHORT cFlags;

{

CacheInfo *cachePtr;

ULONG qSize; // size in QWORDS of cache area

ULONG dSize; // size in DWORDS of cache area requested

ULONG lSize; // size in scan lines of cache area

ULONG qPerLine; // number of QWORDS per line

// Calculate the number of QWORDS needed.

qSize = nPixels / pixPerQword;

if ((nPixels % pixPerQword)!=0) qSize++;

dSize = qSize * 2;

// Round up to the nearest number of lines (this is optional;

// this needs to be done if the application is going to blit

// from screen to off-screen cache, because it's easier to

// manage, as there are no linear destination trajectories,

// only rectangular ones).

qPerLine = ((pitch * 8) / pixPerQword);

lSize = qSize / qPerLine;

if ((qSize % qPerLine)!=0) lSize++;

// Calculate how many qwords that is.

qSize = lSize * qPerLine;

// First, check to see if there are any empty entries in

// the chain.

for (cachePtr=cacheHead; cachePtr!=NULL;

 cachePtr=cachePtr->nextCache) {

 if (cachePtr->empty && qSize<=cachePtr->qSize) {

 cachePtr->nPixels = nPixels;

 cachePtr->empty = FALSE;

 if ((cFlags & CACHE_INITIALIZE) && lpPixels!=NULL) {

 Host2Screen(lpPixels, cachePtr->qOffset, dSize);

 } else if (cFlags & CACHE_ZERO) {

 FillRect (pitch, cachePtr->qOffset, 0L, 0, 0,

 pitch*8, (USHORT)lSize);

 }
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-16 Proprietary and Confidential

Off-Screen Memory Management
 return cachePtr->qOffset;

 }

 }

 if (cacheQRemain < qSize) {

 sprintf(errorString,"AllocCache: Not enough off-screen

 memory\n");

 return 0xFFFFFFFF;

 }

 // Create a new cache entry.

 if (cacheHead==NULL) {

 cacheHead = malloc(sizeof(CacheInfo));

 if (cacheHead==NULL) {

 sprintf(errorString,"AllocCache: Out of heap space\n");

 return 0xFFFFFFFF;

 }

 cacheTail = cacheHead;

 } else {

 cacheTail->nextCache = malloc(sizeof(CacheInfo));

 if (cacheTail->nextCache==NULL) {

 sprintf(errorString,"AllocCache: Out of heap space\n");

 return 0xFFFFFFFF;

 }

 cacheTail = cacheTail->nextCache;

 }

 cacheTail->qOffset = cacheQSize - cacheQRemain +

+ cacheQOffset;

 cacheTail->qSize = qSize;

 cacheTail->nPixels = nPixels;

 cacheTail->empty = FALSE;

 cacheTail->nextCache = NULL;

 cacheQRemain -= qSize;

 if ((cFlags & CACHE_INITIALIZE) && lpPixels!=NULL) {

 Host2Screen(lpPixels, cacheTail->qOffset, dSize);

 } else if (cFlags & CACHE_ZERO) {

 FillRect(pitch, cacheTail->qOffset, 0L, 0, 0,

 pitch*8, (USHORT)lSize);

 }

 return cacheTail->qOffset;

}

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-17

Off-Screen Memory Management
//

// FreeCache

//

// Description:

// Releases a cache area previously allocated with AllocCache

//

// Parameters:

// qOffset QWORD offset of cache area from base of graphics

// memory.

//

// Comments:

// This routine just tags the area as empty and available for

// re-use.

// Garbage collection is not done here.

VOID FreeCache(qOffset)

ULONG qOffset;

{

CacheInfo *cachePtr;

for (cachePtr=cacheHead; cachePtr!=NULL;

cachePtr=cachePtr->nextCache) {

if (cachePtr->qOffset==qOffset) {

cachePtr->empty = TRUE;

return;

}

}

}

//

// LargestCacheBlock

//

// Description:

// Returns the size in QWORDS of the largest empty cache

// block.

ULONG LargestCacheBlock(VOID)

{

CacheInfo *cachePtr;

ULONG biggest=0;
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-18 Proprietary and Confidential

Boot -Time Initialization
for (cachePtr=cacheHead; cachePtr!=NULL;

cachePtr=cachePtr->nextCache) {

if (cachePtr->empty && cachePtr->qSize > biggest) {

biggest = cachePtr->qSize;

}

}

if (cacheQRemain > biggest) {

biggest = cacheQRemain;

}

return biggest;

}

It is left as an exercise for the programmer to devise a garbage collect, flush cache (free
all), and modify cache data routine.

7.8 Boot -Time Initialization

This section describes the registers required to initialize a mach64 after power-up. All
boot-time initialization is performed in the adapter ROM.

• The scratch registers, SCRATCH_REG0 and SCRATCH_REG1, may be used at
the adapter ROM's discretion, with the exception of the lower 7 bits of
SCRATCH_REG1. These bits are used to communicate ROM segment location to
applications, and must be initialized at boot-time. Typically, installed mode
information and other flags are stored in the other bits.

• BUS_CNTL is used to configure the mach64 bus interface unit and to control FIFO
error and host error interrupts. At boot time, all interrupts should be disabled and the
bus interface unit must be programmed appropriately for the type of host expansion
bus. In determining the appropriate initialization values, the safest values should be
used first, and incrementally reduced until minimum safe values are discovered.

• MEM_CNTL is used to configure the memory interface unit. Memory size must be
determined by the adapter ROM and written appropriately. Initial memory boundary
information should be stored in the non-volatile storage area. All other configuration
bits are first determined empirically using the methods described for BUS_CNTL,
and later hard-coded for particular memory configurations.

• GEN_TEST_CNTL is used for accessing an external EEPROM, enabling overscan
to external DACs, enabling the hardware cursor, resetting the draw engine, enabling
VRAM block write memory cycles, and chip diagnostic functions. At boot time,
overscan and block write must be initialized. The hardware cursor must be disabled
and the draw engine must be reset and enabled.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-19

Performance Issues
• CONFIG_CNTL is used for initializing the linear aperture and small apertures,
setting the card ID, and disabling the VGA. The apertures should be disabled on
power-up, and should only be initialized when an application calls the ROM for
aperture services. The card ID should be set to zero in single-card systems. The VGA
disable bit should never be touched.

• CONFIG_CHIP_ID, CONFIG_STAT0, and CONFIG_STAT1 are used to
determine board configuration for initialization, for ROM query functions, or for
hardware debugging.

Of all the registers listed above, only CONFIG_CHIP_ID, GEN_TEST_CNTL,
BUS_CNTL, and SCRATCH_REG1 may be touched by applications.
CONFIG_CHIP_ID is used to identify a specific class and revision of accelerator, and
GEN_TEST_CNTL is used to enable the hardware cursor and reset the draw engine. No
other bits should be touched in GEN_TEST_CNTL. BUS_CNTL is used to configure
interrupts for application debugging. SCRATCH_REG1 is used to determine the ROM
segment location for calling ROM service routines.

7.9 Performance Issues
Performance is a complex issue that requires a clear definition of the terminology and an
explanation of the factors affecting graphics performance.

7.9.1 Redundancy

Redundancy is the duplication of information. Most draw operations are redundant in that
the same pixel or pattern of pixels is repeatedly written into memory. Since host
expansion buses (ISA, EISA, MCA, VLB, PCI) tend to be slow, draw operations
performed by the host CPU tend to be slow as well. Graphics accelerators improve
performance by reducing the amount of redundant information travelling across the host
expansion bus by simply specifying the type of pixel information to be written and the
draw trajectory.

Any operation whose draw information cannot easily be reduced (such as a host-to-screen
bitmap transfer) should do direct memory writes into the linear frame buffer instead of
being drawn by the draw engine because draw setup overhead will slow the operation.

7.9.2 Draw Speed

Draw speed is a raw measure of how fast the draw engine can put pixels to memory. This
is measured in pixels per second. Many benchmark programs do not measure draw speed
correctly because they do not factor in concurrency.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-20 Proprietary and Confidential

Performance Issues
7.9.3 Concurrency

Concurrency is the inherent ability of graphics accelerators to perform a draw operation
at the same time that the host CPU is doing something else. An accelerator is a
fixed-function processor that performs dedicated tasks and relieves the CPU to do other
tasks. Concurrency and reduction of redundancy are the primary reasons why graphics
accelerators are faster than dumb frame buffer devices, such as the VGA.

7.9.4 Efficiency

Efficiency is a measure of concurrency. Maximum efficiency in a software process is
achieved when the host is never idle and the draw engine is never idle (this never
happens). Efficiency will be affected by draw speed, CPU speed, FIFO depth, and the
order of draw operations (for example, a draw engine operation followed by a linear frame
buffer access requires a wait-for-engine-idle in between, which causes the CPU to idle,
thus decreasing efficiency).

Note that graphics benchmark programs are atypical because they have inherently low
efficiency.

Performance should be measured on both slow and fast CPUs because efficiency differs
radically from system to system.

7.9.5 Expansion Buses

There are currently four different expansion bus standards for x86 platforms:

• ISA

• EISA

• VLB

• PCI

Each differs in maximum and typical throughput. Bus type will only affect the
performance of host-to-screen and screen-to-host transfers. Most other draw operations
have very low redundancy and bus transfer times are very small.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-21

Performance Issues
7.9.6 Block Write

Block write is a high speed color fill feature of VRAMs and some specialized types of
DRAMs. Four consecutive addresses can be filled with a solid color in the time it takes to
do a single memory access.

The mach64 uses block write if GEN_BLOCK_WR_EN@GEN_TEST_CNTL is
enabled, the foreground mix is set to paint (function 7), the background mix is set to
transparent (function 3), the color compare function is set to FALSE, WRT_MASK is set
to all '1's, destination pixel size is 8, 15, 16, or 32 bpp, and
DST_24_ROT_EN@DST_CNTL is disabled. Any monochrome source may be used. It is
the adapter ROM's responsibility to enable
GEN_BLOCK_WR_EN@GEN_TEST_CNTL at boot time if a compatible type of
memory is detected.

7.9.7 Memory Bandwidth

Memory bandwidth is a measure of the number of memory accesses per second, which is
easily quantifiable. On the mach64, a memory access to a current page costs two cycles
and a page faulted memory access costs seven cycles.

A page is defined as 512 addresses, where the data width may be 32 bits or 64 bits wide
depending on memory configuration. The frequency of page faulting depends on the burst
rates of the various devices contending for the memory bus.

The table below contains information that is required to perform a memory bandwidth
calculation on all mach64 chips.

Table 7-1 Chip Characteristics Affecting Performance

Feature VT 3D
RAGE

3D
RAGE II

3D
RAGE

II+

3D
RAGE

IIC

3D
RAGE
PRO

LT
PRO/XL/
Mobility

Memory data width < 2M,
bits 32 32 32 32 32 n/a n/a

Memory data width 2M,
bits 64 64 64 64 64 64 64

Source FIFO size 8x32 8x32 16x32 32x32 32x32 32x32 32x32
Page hit (memory cycles) 2 2 2 1 1 1 1
Page miss (memory cycles) 7 7 7 7 7 7 7
Page size (addresses) 512 512 512 512 512 512 512
Maximum memory speed,
MHz 66 66 83 83 83 100 100

≥

RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-22 Proprietary and Confidential

Performance Issues
Blockwrite (SGRAM only) no no no yes yes yes yes

Table 7-1 Chip Characteristics Affecting Performance

Feature VT 3D
RAGE

3D
RAGE II

3D
RAGE

II+

3D
RAGE

IIC

3D
RAGE
PRO

LT
PRO/XL/
Mobility
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-23

Performance Issues
Notes on memory bandwidth analysis:

• Every memory access will either page-hit (the data at the requested memory address
is on the same page as the previous memory access) or page-miss (the requested
address is on a different page as the previous memory access).

• Write-only operations use 1 memory access per QWORD (or DWORD).

• Read-modify-write operations use 2 memory accesses per QWORD (or DWORD). A
read-modify-write will occur if one of the following is true: (1) The WRITE_MASK
is not all 1's, (2) A non-trivial ALU operation is selected, i.e. an ALU operation that
requires a destination read, (3) The destination compare function is non-trivial, i.e. not
TRUE nor FALSE, (4) The left or right edge boundaries are not exactly aligned to a
QWORD (or DWORD); the edge words will be read-modify-write and all other
words will conform to the criteria 1-3.

• Blit operations are either read-write (2 memory accesses) or read-modify-write (3
memory accesses) according to the destination read-modify-write conditions outlined
above. A page miss will occur at a minimum rate of the size of the source FIFO.

• DRAM boards will be affected by the CRTC which is periodically fetching data to
display. The bandwidth used up is roughly equal to the pixel clock rate of the video
mode times the pixel width in bytes. Remember that extra page faulting will occur
because of this fetching. The page faulting frequency can be approximated by
computing the percent bandwidth the CRTC will use and using this ratio to
approximate the page fault rate given the calculated draw speed.

Example of a memory bandwidth calculation: A screen-to-screen blit with
dimensions 160x120, a destination mix of XOR at 30 frames per second in 8
bpp mode, and a pitch of 1024 pixels; assume a memory clock of 50MHz, and
data width of 64 bits.
Number of QWORDs in 160x120 area: (160x120 pixels / (8 pixels /
QWORD)) = 2400 QWORDs.
Number of memory accesses per QWORD: source-read + dest-read +
dest-write = 3 accesses/QWORD
Note that the source read occurs because it is a screen-to screen-operation, and
the destination read occurs because it is a read-modify-write destination mix.
Number of memory accesses: 2400 * 3 = 7200 accesses.
Memory page size: (512 x 64 bits) / (8 bits/pixel) / (1024 pixels/line) = 4 lines
Page faulting from operation size is so infrequent that we will ignore this factor.
Page faults from muxing source-reads and destination-read-modify-writes
should occur every four memory accesses. Therefore, average access time is:
(3 * 2 + 1 * 7) / 4 = 3.25 cycles/access
Number of memory cycles needed for a single blit: 7200 * 3.25
= 23400 cycles.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-24 Proprietary and Confidential

Performance Issues
7.9.8 Performance

Performance is a complex measure, and depends greatly upon host configuration,
accelerator configuration, and application efficiency. Performance cannot be quantified in
a single measure.

• System performance can be improved with faster host and accelerator configurations.

• Application performance on a fixed hardware configuration can be improved by
reducing redundancy and improving efficiency on a particular target system.

Draw speed = (160x120 pixels) / (23400 cycles / 50000000 cycles/sec) = 41
Mpixels/second.
Percent memory bandwidth used: (23400 cycles/frame * 30 frames/sec) /
50000000 cycles/sec * 100% = 1.4%.
Notes:
The average access time calculation will vary depending on a number of
factors. Not aligning a source or destination edge to a QWORD boundary will
increase the average access time by a small amount. A write-only operation
will page fault much less than the read-read-modify-write operation in the
example above.
Also note that these calculations are only applicable to large draw operations.
Draw engine setup overhead becomes much more significant for small
operations.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 7-25

Performance Issues
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
7-26 Proprietary and Confidential

Chapter 8
mach64VT/GT Specific Features

8.1 Introduction
This chapter will focus on the special features that are available on the mach64VT and
mach64GT (3D RAGE/3D RAGE PRO and derivatives) (ATI264VT/GT) variants. As the
mach64VT/GT is fully upward compatible with the mach64CT, any driver that was
written for the mach64CT should work on the mach64VT/GT without modification.

8.2 Summary of Additional Features
The mach64VT has several new hardware features that are useful when doing capture and
playback of motion video data. The new major subsystem is the hardware overlay/scaler.

• Hardware Overlay

• Hardware Scaler

• Hardware Color Keyer

• Hardware Color Source Converter

• Hardware Color Interpolation

• New Register Block Access

The mach64GT (3D RAGE/3D RAGE PRO and derivatives) has some unique features
that are covered in this chapter:

• Front End Scaler/3D Pipeline

• Bus Mastering

There presented an example that explains the details of how to use front end scaler for
color space conversion. Low level programming for 3D operations is not discussed. There
are also two examples of bus mastering; one using the bus mastering capabilities of the 3D
RAGE PRO graphics controller to transfer a bitmap from system memory to the frame
buffer, and a second example that shows how to queue a series of engine register writes
and bus master them to the GUI.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-1

mach64VT/GT Register Access
8.3 mach64VT/GT Register Access

The register mapping for the mach64VT follows the same convention as the mach64CT
registers. All registers are mapped relatively to the top of the defined memory aperture.
For the mach64CT, a 1KB block at the top of the aperture was defined for all registers.
This upper 1KB block is known as block 0. The mach64VT/GT expands this register
space by adding a new 1KB register block below the original block0. This new block is
referred to as block 1, and it contains registers that are specific to the mach64VT/GT. Note
that these new registers are memory mapped only.

8.3.1 Memory Map

The following diagram gives a pictorial representation of the register blocks’ location
relative to the graphics aperture and system memory.

Figure 8-1. Aperture Within Host Address Space (PC-compatible)

Typical Organization Of mach64 Aperture Within Host Address Space

System BIOS

mach64 BIOS

mach64 Aperture

System Memory

System Memory

MM Register Block 0

Big-endian Aperture

Frame Buffer

Conventional

VGA Aperture

FFFFh:FFFFh
E000h:0000h
C800h:0000h
C000h:0000h

A000h:0000h

0000h:0000h0MB

1MB

16MB (varies)

Aperture Base
Aperture Base + 16MB

4GB

Offset 0MB

Offset 2MB

Offset 8MB - 1KB

Offset 8MB

Offset 16MB

Aperture Base address can be located anywhere in the shaded region
and is aligned to a multiple of 16MB

 (PC-compatible)

MM Register Block 1 Offset 8MB - 2KB

Memory
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-2 Proprietary and Confidential

mach64VT/GT Register Access
8.3.2 Determining Register Address

All mach64VT/GT registers in register block 1 are memory mapped only. These registers
are all 32 bits wide.

• If the small aperture are enabled, the memory mapped registers in block 1 may be
accessed through a 1KB area at a segmenet:offset of B000h:F800h.

• If the big aperture is enabled, the memory mapped registers in block 1 occur the
address space located at the base address of the aperture, plus an offset of 7FFC00h
for an 8MB aperture configuration. A method of accessing extended memory is
required to access the registers at this location. Note that the mach64VT/GT does not
have a 4MB aperture configuration.

Referring to the mach64 Register Reference Guide, the DWORD Offset or Memory Map
(MM) select is given to describe the register’s address. The following notation is used:

MM:block#_offset

where block# identifies the register block and offset is the DWORD offset within the
accosted block. For example, OVERLAY_SCALE_CNTL is located at MM:1_09h, i.e.,
DWORD offset 9 within register block 1. If the register block# is omitted then the register is
assumed to be in block 0.

If access through the small apertures is desired, the physical address for register block 1
can be determined by the following equation:

physical memory address = (MM select << 2) + B000h:F800h

For example, if the MM select = 1_09 (OVERLAY_SCALE_CNTL), the physical
address would be B000h:f824h.

If the big aperture is enabled, the equation for register block 1 becomes:

physical memory address = (MM select << 2) + aperture base +
memmap offset

where memmap offset is 7FF800h. Using the example above, if the aperture base
address is A0000000h, the aperture size is 8MB (offset 7FF*00h) and the
MM select = 1_09 (OVERLAY_SCALE_CNTL), the physical memory address would
be A07FF824h.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-3

Hardware Overlay/Scaler
8.3.3 Enabling Register Block 1

In order to access register block 1, it must first be enabled. This is accomplished by setting
BUS_EXT_REG_EN@BUS_CNTL.

Example Code for Enabling Register Block 1

//

void enable_block_1 (void)

{

 WaitForIdle ();

 //Enable register block 1 by setting BUS_CNTL[27]

 regw (BUS_CNTL, regr (BUS_CNTL) | 0x08000000);

}

8.4 Hardware Overlay/Scaler

The mach64VT/GT adds a single pass back end vertical/horizontal scaling unit. Scaling is
defined by a starting display coordinate that is relative to the start of the active display
area. Scaling output is enabled based on the color key and color key function selected. An
overlay area is redefined as the area to be scaled in the display output. the maximum input
width of the input source to be scaled up or down is 384 pixels with revision A variants of
the mach64VT/GT, and 720 pixels for revision B asics and beyond.

Scaling is orthogonal to the GUI engine operations. As such, engine operations can occur
concurrently and independent of scaling operations.

Source scaling formats supported:

• RBG 555

• RGB 565

• RGB 8888

• YUV9 planar

• UYV12 planar

• YUVU 422 packed

• VYUY 422 packed

Destination format supported is RGB24bpp direct to the DAC.

• Edge effect for scaling are on the right side (end pixels) of the display

• The scaler can operate on packed data, YUV9/12 scaling or direct RGB scaling with
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-4 Proprietary and Confidential

Hardware Overlay/Scaler
RGB/YUV 422 packed output

• YUV modes support pixel lending when scaling. For RGB input to the scaler, only
pixel replication is allowed.

• Support for independent Video input

• Page flipping based on display/video_in trigger conditions

8.4.1 Overlay

The overlay starting and ending coordinates (OVERLAY_Y_X) must always be in the
active region of video or else undetermined side effects will occur. In addition, the ending
overlay coordinates must be greater than the starting coordinates. If the ending coordinates
are outside the active region, clipping will not occur.

The overlay can operate at a different pixel depth than the graphics display, but the
overlay is restricted to direct color modes.

When ECP_DEV@PLL_VCLK_CNTL = VCLK/2, the overlay has the following
programming restrictions:

1. Overlays starting on an even pixel must end on an even pixel. Failure to do so
will result in one less pixel being displayed.

2. Overlays starting on an odd pixel must end on an odd pixel. Failure to do so will
result in one less pixel being displayed.

8.4.2 Scaler

The buffers used for scaler input are restricted to being quadword aligned. Both the initial
offset of the buffers being used and the pitch must fall on quadword boundaries.

The scaler source is limited to lines no longer than 384 pixels in length with revision A
variants of the mach64VT/GT, and 720 pixels for revision B asics and beyond.

The 3D RAGE PRO also introduces some new registers that affect the scaler/overlay
operation. Five scaler co-efficient registers have been introduced that control the peaking
of the horizontal scaler. A function has been introduced that programs these registers to
acceptable default values.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-5

Hardware Overlay/Scaler
8.4.3 Color Keyer

The following registers are used to enable color keying with respect to the overlay:

OVERLAY_KEY_CNTL, OVERLAY_VIDEO_CLR_KEY,
OVERLAY_VIDEO_CLR_MSK, OVERLAY_GRAPHICS_CLR_KEY,
OVERLAY_GRAPHICS_CLR_MSK.

There are color keys for both graphics and video. The graphics color key applies to data
that is retrieved from the engine or the frame buffer. The video color key is applied to data
that originates from the capture buffer(s). Both key color registers are 24 bits wide. The
value of the color key should be entered as it applies to the current graphics mode. The
mask registers should be set up to mask out the bits that you will not use in your color key.
For instance, in 16 bpp mode (565), bits 16 - 23 should be masked out, as we will not be
using those bits when comparing the source data against the destination.

VIDEO_KEY_FN @ OVERLAY_KEY_CNTL and GRAPHICS_KEY_FN @
OVERLAY_KEY_CNTL determine how the color keys are applied. It is also possible to
compare the graphics and video outputs by using OVERLAY_CMP_MIX @
OVERLAY_KEY_CNTL. A programing example is provided with the source code that
accompanies this document.

8.4.4 Color Interpolator/ Alpha Blender

The alpha blender is a 5 bit multiplier which is used in both vertical and horizontal
scaling.

Vertical mode multiplies all components from the current line (1 - alpha), and adding that
to the result of the alpha multiplied by the next line.

Vertical and horizontal modes apply an alpha derived from the high 5 fractional bits of the
vertical and horizontal DDAs to a pixel and its vertically/horizontally adjacent pixel. The
exact equation is shown below:

blendedPixel = (1 -) * currentPixel + * nextPixel

The display scaler can upscale or downscale in both the horizontal and vertical directions.
When downscaling is involved, the following scaling algorithms are applied to the vertical
and horizontal scaler based on what the next line or pixel to be fetched is. If the (next
line/pixel) (current line/pixel + 2), the current value of " " will be ignored in favor of
either a 50-50 blend or " " = 0 (fixed alpha). It should be noted that the next line or pixel
to fetch is determined by the current integer portion of the accumulator. The limitations
incurred by downscaling are a result of the architectural limitations of the mach64VT in
the vertical blending stage. For YUV scaling, it is worth noting that there are cases when
the Y component may be downscaling while the UV components may require upscaling.

α α

≥ α
α

RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-6 Proprietary and Confidential

Hardware Overlay/Scaler
This is due to the fact that in the YUV modes supported, the UV pixels are subsampled.
For example, in YVU9, the pixel subsampling is 1:4. Thus, the scaling factor for UV is 1/4
that programmed for Y. A downscaling factor of Y (1 sf 4) will result in an upscaling
factor of (0.25 sf 1) for the corresponding UV pixels in YVU9 mode.

The scaler is limited to source lines 384 pixels in length with revision A variants of the
mach64VT/GT, and 720 pixels for revision B asics and beyond.

8.4.5 Color Space Converter

Color conversion equations for YUV (CCIR-601) to RGB with a color temperature of
9300K:

 R = 9Y/8 + 25V/16 - 218

 G = 9Y/8 - 13V/16 - 25U/64 + 136

 B = 9Y/8 + 2U - 274

The red equation (CCIR-601) with color temperature of 6500K:

 R = 9Y/8 + 25V/8 - 418

For optimal results, the incoming YUV is pre-saturated to 16 Y 235, and
16 (U and V) 240 prior to being converted to RGB space.

The Y2R conversions (R2Y/Y2R) can be manually overridden and disabled if desired.

≤ ≤
≤ ≤

≤
≤

≤ ≤
≤ ≤
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-7

Packed Pixel Modes
8.5 Packed Pixel Modes

The following packed pixel formats are supported by the mach64VT/GT overlay/scaler
hardware:

8.6 Planar Pixel Modes
YVU9 is 4:1:1 subsampled for U and V in both horizontal and vertical directions. For
every 4 Y pixels in the horizontal direction, there is a corresponding U/V pixel as a result
of the horizontal subsampling. For every 4 Y lines in the vertical direction, there is a
single U/V line due to the vertical subsampling. In essence, for each 4x4 block of Y
pixels, there is a single U/V pixel associated with it. The Y/U/V pitches are specified in
terms of pixels. The Y/U/V offsets are specified in terms of bytes. The U and V
dimensions must be exactly 1/4 of the Y dimensions.

Figure 8-2. YVU9 4:1:1 Ratios

Packed Pixel Mode
Mode B3 (31:42) B2 (23:16) B1 (15:8) B0 (7:0)

15bpp RGB 1555 a1R1R1R1R1R1G1G1 G1G1G1B1B1B1B1B1 a0R0R0R0R0R0G0G0 G0G0G0B0B0B0B0B0

16bpp RGB 565 R1R1R1R1R1G1G1G1 G1G1G1B1B1B1B1B1 R0R0R0R0R0G0G0G0 G0G0G0B0B0B0B0B0

32bpp RGB a888 a R G B

YUV422: (11) VYUY V Y1 U Y0

YUV422: (12) YVYU Y1 V Y0 U

YUYV mode is considered a 16bpp mode (since each "unit" is
YUYV), thus the pitch/offset for YUYV should be set in terms of
16bpp pixel (even though each YUYV unit contains two pixels, with
UV being shared).

Y

V U
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-8 Proprietary and Confidential

Planar Pixel Modes
YVU12 is 4:2:2 subsampled for U and V in both horizontal and vertical directions. For
every 2 Y pixels in the horizontal direction, there is a corresponding U/V pixel as a result
of the horizontal subsampling. For every 2 Y lines in the vertical direction, there is a
single U/V line due to the vertical subsampling. In essence, for every 2x2 block of Y
pixels, there is a single U/V pixel. The Y/U/V pitches are specified in terms of pixels. The
Y/U/V offsets are byte offsets. The U and V dimensions must be exactly 1/2 of the Y
dimensions for YVU12.

Figure 8-3. YVU12 4:2:2 Ratios

Y

V U
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-9

Unpacker / Dynamic Range Corrector
8.7 Unpacker / Dynamic Range Corrector

Source pixels of low pixel depth should be dynamically range corrected when expanded to
24 bit pixels. The unpacker also has a bypass mode for YUV sources, and a zero extend
mode for when dynamic range correction is not desired. RGB modes are internally
expanded to 24-bit modes prior to scaling. The scaled image is then dithered down to the
destination output mode. The "a888" mode is internally processed as a "565" mode. Thus,
only the most significant bits of each color component (RGB) are used when scaling
24-bit mode.

Table 8-1 Pixel Expansions

Zero Extended and Dynamic Range Corrected Pixel Expansions
aRGB 1555 RGB 565 aRGB a888

Zero Dyn Zero Dyn Zero Dyn

Red

R(7) D(14) D(14) D(15) D(15) D(23) D(23)
R(6) D(13) D(13) D(14) D(14) D(22) D(22)
R(5) D(21) D(12) D(13) D(13) D(21) D(21)
R(4) D(11) D(11) D(12) D(12) D(20) D20)

Red

R(3) D(10) D(10) D(11) D(11) D(19) D(19)
R(2) 0 D(14) 0 D(15) 0 D(23)
R(1) 0 D(13) 0 D(14) 0 D(22)
R(0) 0 D(12) 0 D(13) 0 D(21)

Green

G(7) D(9) D(9) D(10) D(10) D(15) D(15)
G(6) D(8) D(8) D(9) D(9) D(14) D(14)
G(5) D(7) D(7) D(8) D(8) D(13) D(13)
G(4) D(6) D(6) D(7) D(7) D(12) D(12)
G(3) D(5) D(5) D(6) D(6) D(11) D(11)
G(2) 0 D(9) D(5) D(5) D(10) D(10)
G(1) 0 D(8) 0 D(10) 0 D(15)
G(0) 0 D(7) 0 D(9) 0 D(14)

Blue

B(7) D(4) D(4) D(4) D(4) D(7) D(7)
B(6) D(3) D(3) D(3) D(3) D(6) D(6)
B(5) D(2) D(2) D(2) D(2) D(5) D(5)
B(4) D(1) D(1) D(1) D(1) D(4) D(4)
B(3) D(0) D(0) D(0) D(0) D(3) D(3)
B(2) 0 D(4) 0 D(4) 0 D(7)
B(1) 0 D(3) 0 D(3) 0 D(6)
B(0) 0 D(2) 0 D(2) 0 D(5)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-10 Proprietary and Confidential

Overlay Programming
8.8 Overlay Programming

8.8.1 Overlay Scaling

The scaling operation allows vertical and horizontal single pass scaling for up/down to the
DAC. The graphics and video streams are combined based on source/destination keying
operation. In addition, scaling can take place from a single buffer or can be double
buffered. The register programming outlined below assumes that the host uses a
convention of 12 fractional bits and 4 integer bits (8 bits on a 3D RAGE PRO) in its
vertical scale accumulator and increment variable.

1. Determine the horizontal/vertical scale increments

V_INC =

H_INC =

It is recommended that V_INC/H_INC be truncated after the 12th decimal place to avoid
running out of source pixels (due to error) as opposed to rounding up to the nearest value.

2a. Initialize scalar vertical/horizontal registers.

xxxx@OVERLAY_SCALE_CNTL = Configure scaling options

VERT_INC@OVERLAY_SCALE_INC = V_INC

HORZ_INC@OVERLAY_SCALE_INC = H_INC

2b. (i) For Single Buffer Scaling from Buffer 0:

SCALER_IN@VIDEO_FORMAT = input source format for scaler

BUF0_OFFSET = byte address/offset of BUF0

BUF0_PITCH = pitch of BUF0

SCALER_HEIGHT_WIDTH = width and height of the buffer for scaling

SCALER_BUF@CAPTURE_CONFIG = Buffer 0 (set scaler to buffer 0)

(ii) For Double Buffering add:

BUF1_OFFSET/PITCH = address offset/pitch of BUF1

xxxx@CAPTURE_CONFIG = set trigger conditions

sourceHeight 12«
destinationHeight
--

sourceWidth 12«
destinationWidth

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-11

Overlay Programming
3. Scale to DAC: (24bpp fixed)

OVERLAY_Y_X = (x, y) coordinates of overlay relative to (0, 0) top left corner of active
display

OVERLAY_Y_X_END = ending coordinates of overlay window (bottom, right corner)

OVERLAY_KEY_CLR/MSK = Overlay key color and mask settings

OVERLAY_KEY_CNTL = Determines how overlay will use key color

4. Enable scaling/overlay window

SCALE_EN@OVERLAY_SCALE_CNTL = enable

OVERLAY_EN@OVERLAY_SCALE_CNTL = enable

This will enable continuous scaling of the "video" data to the overlay or video port.

8.8.2 UV Interpolation

In YUV modes YUV422, YVU12, and YUV9, the UV data is subsampled. In YUV422,
UV is subsampled in the horizontal direction only (1:2 subsampling), while YVU12 and
YVU9 subsample UV both in the vertical and horizontal directions (1:2 and 1:4,
respectively). For background purposes, the following possible subsampling types can
exist:

The mach64VT is equipped to best handle subsampled data for case (1) of UV (1:2) and
case (1) for UV (1:4).The chroma component of all subsampled YUV sources is

Table 8-2 Possible Subsampling Types

Subsample
Algorithm Y Pixels UV Subsampling (1:2) UV Subsampling (1:4)

UV Even y0, y1, y2, y3, y4... 1. u0, u2, u4, u6... 1. u0, u4, u8, u12...
2. u2, u6, u10, u14...

UV Even Blend +
 + 1/2

y0, y1, y2, y3, y4... 2. 1/2(u0+ u1), 1/2(u2+ u3),
1/2(u4+ u5)...

3. 1/2(u0+ u1), 1/2(u4+ u5),
1/2(u8+ u9)...

4. 1/2(u2+ u3), 1/2(u6+ u7),
1/2(u10+ u11)...

UV Odd y0, y1, y2, y3, y4... 3. u1, u3, u5, u7... 5. u1, u5, u9, u13...
6. u3, u7, u11, u15...

UV Odd Blend +
 + 1/2

y0, y1, y2, y3, y4... 4. 1/2(u1+ u2), 1/2(u3+ u4),
1/2(u5+ u6)...

7. 1/2(u1+ u2), 1/2(u5+ u6),
1/2(u9+ u10)...

8. 1/2(u3+ u4), 1/2(u7+ u8),
1/2(u11+ u12)...
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-12 Proprietary and Confidential

Front End Scaler Programming
interpolated. For other subsampling types, the UV data sampled for
YUV422/YVU12/YVU9 cannot be centered according to input subsampling.
The interpolation for the UV pixels is fixed as follows:

YUV422/YVU12: U0, (U0+U1)/2 and V0, (V0+V1)/2

YVU9: U0, (3U0 + U1)/4, (U0+U1)/2, (U0+3U1)/4
and V0, (3V0+V1)/4, (V0+V1)/2, (V0+3V1)/4

8.9 Front End Scaler Programming

8.9.1 Front End Scaler Operation

The 3D RAGE II/II+/IIC and the 3D RAGE PRO chips all have a front end scaler / 3D
engine pipeline that provides support for horizontal and vertical scaling, interpolation and
color space conversion of source images.

Scaled pixel data is processed through a 2 tap, 4 bit co-efficient fixed linear filter.
Horizontal and vertical scaling are done in a single pass. For each destination line, two
lines of source data are read, and then color expanded to 24 bpp for vertical blending. The
resultant data is then blended horizontally, converted to RGB if necessary and then packed
to the destination pixel type and dithered.

8.9.2 Performing a Blt Using the Front End Scaler

To configure the front end scaler for a bit block transfer (blt), follow these steps:

1. Activate the front end scaler

SCALE_3D_FNC@SCALE_3D_CNTL

2. Initialize appropriate registers (for the 3D RAGE PRO only)

ALPHA_TST_CNTL = 0 (turn off any default alpha blending states)

TEX_CNTL = 0 (turn off any default lighting states)

3. Configure the front end scaler registers for the blt

SCALE_OFF = offset in the frame buffer of the scaler source data

SCALE_PITCH = the appropriate pitch for the scaler source data

SCALE_WIDTH = the width of the scaler data
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-13

Front End Scaler Programming
SCALE_HEIGHT = the height of the scaler data

4. Set the appropriate scaling factors

SCALE_X_INC = X scaling factor (this register follow a 12 bit fractional, 8 bits unsigned
integer format)

SCALE_Y_INC = Y scaling factor (this register follow a 12 bit fractional, 8 bits unsigned
integer format)

* for the 3D RAGE II/II+ only:

SCALE_UV_HACC = UV scaling factor, should you wish to scale U and V independent
of Y.

 5. Set the engine up to use the front end scaler for the blt

DP_FRGD_SRC@DP_SRC = 5, to use the front end scaler data

DP_SCALE_PIX_WIDTH@DP_PIX_WIDTH

DP_DST_PIX_WIDTH@DP_PIX_WIDTH

enable the appropriate bits @DP_WRITE_MSK

set the desired mix display mixing settings @DP_MIX

set the appropriate draw engine trajectory @GUI_TRAJ_CNTL

DST_X@DST_X

DST_Y@DST_Y

DST_HEIGHT@DST_HEIGHT

DST_WIDTH@DST_WIDTH - this initiates the blt
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-14 Proprietary and Confidential

Bus Master Programming
8.10 Bus Master Programming

8.10.1 Bus Master Operation

The 3D RAGE II/II+/C and 3D RAGE PRO chips all have the ability to act as a bus
master. The bus mastering capabilities of these chips allow you to transfer data from
system memory to the frame buffer and vice versa with minimal CPU usage. There are
basically two types of transfers that the graphics chip will perform: system and GUI
transfers. A system transfer involves moving memory between system memory and frame
buffer memory (either way), while a GUI transfer involves moving data from system
memory to the frame buffer through the GUI (or engine). A typical use of a system
transfer would be moving a bitmap that is loaded into system memory into the frame
buffer. You could also use the bus master to move data that was captured into the frame
buffer over to system memory for modification by the CPU or other devices. A typical use
of a GUI transfer (also known as a "virtual FIFO") would be to queue up a series of engine
register writes in system memory, then bus master the list to the GUI using the bus master.
If an application is constantly performing the same type of blt or screen setup, it may be
beneficial to use the bus master in this case.

8.10.2 Creating a Descriptor Table

The bus master is instructed where to retrieve data through the use of descriptor tables. A
descriptor entry consists of 4 DWORDs, with the following values:

Note that a maximum of 4096 bytes of data can be transferred per descriptor. As a result,
if you are transferring an image that is larger than 4 kb, you must create a "table" of

Table 8-3 Descriptor Entry

Name Bit Function
DWORD 0 BM_FRAME_BUF_OFFSET 23:0 Frame buffer offset for data transfer

DWORD 1 BM_SYSTEM_MEM_ADDR 31:0 Physical system memory address for data transfer

DWORD 2 BM_COMMAND 11:0
30
31

Count of bytes to transfer (4 kb maximum)
Disable incrementing frame buffer offset
End of descriptor list

DWORD 3 Reserved 31:0

Transfers use the same byte offsets for both frame buffer and system memory
addresses. For transfers from system memory, the bus master hardware will use
system memory address bits [1:0] for the frame buffer offset bits [1:0]. For
transfers from the frame buffer, frame buffer offset bits [1:0] will be used in
place of the system memory bits [1:0]. Thus, the source address of the transfer
will always dictate the byte alignment bit [1:0] and override the destination
setting.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-15

Bus Master Programming
descriptor entries. The last entry must have bit 31 of the BM_COMMAND DWORD set
to 1 to indicate to the bus master hardware that this is the last descriptor entry.

When using the bus master hardware for GUI register writes (as a "virtual FIFO"), you
must write the data to the BM_ADDR register. When using this method, the hardware will
know that the first DWORD is the address of the register (in the MM offset format), and
the following DWORD is the data for that register. In this case, because you wish to send
all the data to the same register (BM_ADDR), you must inhibit incrementing the frame
buffer offset. This is done by setting bit 30 of BM_COMMAND descriptor entry to a 1.

A programming example is provided for setting up a descriptor table, as well as
performing a GUI bus master.

PSEUDO CODE TO SET UP A DESCRIPTOR:

loop:

• write the frame buffer destination offset address to BM_FRAME_BUFF_OFFSET

• write the physical address of the memory to be transferred to
SYSTEM_MEM_ADDR

• write the amount of bytes to be transferred to BM_COMMAND (4096 bytes
maximum)

• if this is the last descriptor entry, set bit 31 to 1.

• if you are writing to one memory address (e.g. for a GUI transfer),
set bit 30 to 1.

• write a 0 for the reserved DWORD

• if there is still more data to be transferred, increment the
BM_FRAME_BUFF_OFFSET and SYSTEM_MEM_ADDR appropriately, and go
to loop to create another descriptor.

The entire descriptor table must be in contiguous memory as well as the
physical memory address of the head of the table must be known.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-16 Proprietary and Confidential

Bus Master Programming
8.10.3 Setting up a System Bus Master Transfer

When a program requires a transfer of data from system memory to the frame buffer, the
bus mastering capabilities of the 3D RAGE can be used to allow the CPU to perform other
tasks while the 3D RAGE moves the data into the frame buffer.

The steps required to set up the 3D RAGE to perform a bus master operation from system
memory to the frame buffer are outlined below. We are assuming that the descriptor table
has already been set up, and the physical memory address of the descriptor table is
paragraph aligned.

1. Set BUS_EXT_REG_EN@BUS_CNTL to enable the multimedia registers.

2. Set BUS_MASTER_DIS@BUS_CNTL to 0 to enable bus mastering

3. Set BUSMASTER_EOL_INT_AK@CRTC_INT_CNTL to 1 to clear the bus
master end of transfer interrupt.

4. Set BUSMASTER_EOL_INT_EN@CRTC_INT_CNTL to enable the interrupt

5. Set SYSTEM_TRIGGER@BM_SYSTEM_TABLE to the desired transfer
method (0 in this case), then OR this with
SYSTEM_TABLE_ADDR@BM_SYSTEM_TABLE (which is the physical
memory address of the head of the descriptor table - the first descriptor entry), and
write this to BM_SYSTEM_TABLE. Writing to BM_SYSTEM_TABLE initiates
the bus master operation.

At this point, you can allow the CPU to perform other tasks. To find out if the bus master
transfer is complete, read BUSMASTER_EOL_INT@CRTC_INT_CNTL to see if it is
set to 1. This indicates that the transfer is complete. Once BUSMASTER_EOL_INT has
been acknowledged (set to 1), a 1 should be written to this bit to clear the interrupt.

8.10.4 Setting up a GUI Master Operation

As mentioned, the bus master hardware on the 3D RAGE can be configured to act as a
virtual FIFO. You can queue up a number of register writes and use the bus master
hardware to perform the writes in a single pass, thus freeing up the CPU to perform other
tasks. The descriptor table is sent by the hardware to a circular buffer. The size of this
buffer is determined by CIRCULAR_BUF_SIZE@BM_GUI_TABLE. Buffer sizes are
16, 32, 64 and 128 kb. For this reason, the physical memory address of the descriptor table
must be aligned to the size of the circular buffer selected. That is, if you select a 16 kb
circular buffer, the memory that you allocate for your descriptor table must start on a 16
kb boundary. If your queue of commands actually exceeds 16 kb, the buffer simply wraps
around on the 16 kb address, thus making a "circular" buffer.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-17

Bus Master Programming
When using the bus master hardware as a virtual FIFO, the data that is to be transferred
takes the following format:

DWORD (register address in MM offset format)

DWORD (data to be written to the register)

...

DWORD (register address in MM offset format)

DWORD (data to be written to the register)

The descriptor must be created so that the BM_SYSTEM_MEM_ADDR points to the
beginning of this chain of register address/data alternating DWORDs.

Here are the steps to setup the bus master hardware to work as a virtual FIFO:

1. Set BUS_EXT_REG_EN@BUS_CNTL to enable the multimedia registers.

2. Set BUS_MASTER_DIS@BUS_CNTL to 0 to enable bus mastering

3. Set FRAME_BUF_OFFSET to BM_ADDR + the memory mapped register offset
from the beginning of the aperture (0x7FFC00 in an 8 Mb aperture). BM_ADDR
must be in the MM offset format, which is 0x92.

4. Set SYSTEM_MEM_ADDR to the physical memory address of the data to be
transferred.

5. Set BM_COMMAND to the amount of bytes to be transferred. Also, set bit 30 to
1 to indicate that the frame buffer offset should NOT be incremented. Also, if this is
the last descriptor, set bit 31 to 1 to indicate the end of the descriptor table.

6. Set the reserved DWORD to 0.

7. Repeat steps 3 to 6 for each descriptor required.

8. Logically OR the physical address of the GUI descriptor table
(GUI_TABLE_ADDR@BM_GUI_TABLE) with the circular buffer size you wish
to set up (CIRCULAR_BUF_SIZE@BM_GUI_TABLE), and write this value to
BM_GUI_TABLE.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-18 Proprietary and Confidential

Bus Master Programming
9. Set SRC_BM_ENABLE, SRC_BM_SYNC, and
BUS_MASTER_OP@SRC_CNTL to the active settings. BUS_MASTER_OP = 3
for a system memory to bus master host data register transfer.

10. Initiate a GUI operation (write DST_WIDTH or DST_HEIGHT_WIDTH). The
value you write to this register does not matter.

To determine if the transfer is complete, you must wait for engine idle.

If an application is writing to consecutive registers (i.e. register MM offsets are
consecutive), the bus master hardware can be set up to use the first DWORD as the
address of the starting register, then continue for n registers. The value of n-1 (writing 0
means that 1 register will be written) is written to GUIREG_COUNTER@BM_ADDR,
and the hardware will automatically increment the register address on each write. Thus the
data would be formatted:

DWORD (register address in MM offset format = "n")

DWORD (data to be written to register n)

DWORD (data to be written to register (n + 1))

DWORD (data to be written to register (n + 2))

...
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential 8-19

Bus Master Programming
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
8-20 Proprietary and Confidential

Appendix A
Video BIOS Functions Specification

A.1 Calculating ROM Base Address

The extended BIOS function call can be invoked by a far call to the ROM. The far call is
implemented and can be executed in x86’s 16-bit protected mode. To invoke the extended
BIOS using a far call, the ROM base address can be calculated as follows:

ROM_ADDR = (SCRATCH_REG1 & 0x7F) * 0x80 + 0xC000

where SCRATCH_REG1 is 084h + base_address.

A.2 Function Calls

Base ROM address is determined by the register SCRATCH_REG1(base_address + 084h)
and the ROM services are accessible by absolute calls at this address with the following
instructions.

CALL ROM_ADDR:64h

Another way to invoke the extended ROM service is by calling a INT 10h with
AH=0A0h. The support of INT 10h is also available with VGA disabled mode. The only
requirement is that the primary adapter has to be a VGA and no CGA or monochrome card
can be supported.

A.3 Compatibility
The purpose of these extended ROM services is to provide a set of the most commonly
used hardware dependent functions in a standard interface, so that application
programmers need not worry about the details of hardware programming. It is
recommended that drivers developed for 3D RAGE PRO and its derivatives use the
extended function AL = 02h to set the display mode. All drivers should work in VGA
share mode.

All functions return with an error code in AH:

AH = 0 No error
AH = 1 Function complete with error
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-1

Function 00h – Load Coprocessor CRTC Parameters
A.4 Function 00h – Load Coprocessor CRTC Parameters

This function programs the CRTC register for the requested display mode.

AH = 2 Function not supported

To Call: AL = 00h Load coprocessor CRTC parameters
CL =

CL [3 - 0] = Color depth
= 1 4bpp
= 2 8bpp
= 3 15bpp (555)
= 4 16bpp (565)
= 5 24bpp (in RGB format if available, else in

BGR)
= 6 32bpp (in RGBx format if available, else

whatever 32bpp that is supported)

CL [4] = 1 Enable gamma correction if 15bpp and
above

= Set the RAMDAC to 8bit if in 8bpp mode, to
support 256 color grey scale

CL [7 - 6] = Pitch size
= 0 1024
= 1 Don't change
= 2 Pitch size is the same as horizontal display

CH = Resolution
=
=
=
=

=

=

=
=
=
=
=
=
=
=

E1h
E2h
E3h
E4h

E5h

E6h

12h
6Ah
55h
80h
81h
82h
83h
84h

640x400
320x200
320x240
512x384, use query function to determine if the mode is

supported
400x300, use query function to determine if the mode is

supported
640x350, use query function to determine if the mode is

supported
640x480
800x600
1024x768
Load table from offset of external storage(EEPROM) in BX
Load table according to data in DX:BX
OEM specific mode
1280x1024
1600x1200
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-2 Proprietary and Confidential

Function 01h – Set Display Mode
A.5 Function 01h – Set Display Mode

This function programs the controller into VGA or extended display mode.

A.6 Function 02h – Load Coprocessor CRTC Parameters and Set
Display Mode
This function combines the operations of both function 00h and function 01h. It programs
the controller completely and is recommended for setting up an extended display mode.

A.7 Function 03h – Read EEPROM Data
This function reads data from the optional EEPROM, which acts as an external storage for
the display mode information.

DX:BX = Pointer to parameter table if CH = 81h
BX = Offset into EEPROM table if CH = 80h

To Call: AL = 01h Set display mode
CL =

CL [0] = 0 VGA and set the DAC to 6 bit
= 1 Coprocessor

CL [5] = 0

CL [7] = 1 Enable 8bit DAC or Gamma Correction
this bit is or with CL [4] in
function AL=00h

Returns: CL [5] = 0 CRTC parameters are normal
= 1 CRTC parameters doubled by

hardware
In case CL [5] =1, the actual CRTC pitch value should be divided

by 2 if programmed by application directly.

To Call: AL = 02h Read EEPROM data
BX = Index

Returns: BX = Data
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-3

Function 04h – Write EEPROM Data
A.8 Function 04h – Write EEPROM Data
This function writes data to the optional EEPROM which acts as an external storage for
the display mode information.

A.9 Function 05h – Memory Aperture Service
This function is for enabling/disabling the memory aperture.

A.10 Function 06h – Short Query Function
This function returns selected information about the controller.

Comments: Before using this function, user should call function 11h to check whether
EEPROM is present.

To Call: AL = 04h Write EEPROM data
BX = Index

Returns: DX = Data

Comments: User should call function 11h to check whether EEPROM is present prior to
using this function.

To Call: AL = 05h Memory aperture service
CL = 0 Disable all memory apertures

CL [0] = 1 Enable linear memory aperture
CL [2] = 1 Enable VGA memory aperture
CL [7] = 1 Set memory aperture location,
BX = Aperture location in MB. Only implemented with mach64 GX

revision 1 or higher

Comments: The linear aperture can not be disabled and the aperture address can be
changed through the PCI configuration space register only.

To Call: AL = 06h Short query function
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-4 Proprietary and Confidential

Function 07h – Return Graphics Hardware Capability List
A.11 Function 07h – Return Graphics Hardware Capability List

This function returns the display mode support information in terms of maximum pixel
clock allowed at each resolution for each color depth. The data returned by this function is
determined only by the graphics controller hardware capabilities, and therefore should not
be assumed to reflect limitations of attached devices such as a panel or TV. Use the Query
Device Function 09h to determine mode support information on a per device basis.

AL [4 - 0] = Aperture configuration
= 0 Disable
= 1 4M
= 2 8M

AL [5] = 1 VGA disable
AL [6] = 0 Aperture address is user configurable

= 1 Aperture address in predefined or hard
coded in BIOS

AL [7] = 1 Aperture address is in 128M range
= 0 Aperture address is in 4G range

BX = Aperture address
CH = Color depth support

(see also offset 13 in “Query structure”, Table 8-4)
CL = Memory size
DX = ASIC identification

DX [7 - 0] = Revision
DX [15 - 8]= Type

To Call: AL = 07h Return graphics hardware capability list

Returns: DX:BX = Offset into a table specifying the Maximum Dot Clock information,
the table is terminated by a zero in the first column (see also and
)

DX:[BX -1] = Number of bytes per row
DX:[BX - 2] = Format type

AL = Format type
0 or 1

DX:CX = Pointer into table specifying the Maximum Dot Clock information
(only if the value in CX has be modified, set CX = 0ffffh and
check if the value changed after calling).

The table is terminated by a zero in the first column.
The application program should check this table first to determine if

the Video Mode is supported (see also).
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-5

Function 07h – Return Graphics Hardware Capability List
Table A-1 Maximum Dot Clock Information (DACMASK / RAMMASK)

H_DISP DACMASK (if format == 0)
RAMMASK (if format == 1) MEMREQ MAX

DOTCLOCK
PIXEL
WIDTH

0 (end of table)

Table A-2 Maximum Dot Clock Information (DACTYPE / RAMTYPE)

H_DISP DACTYPE (if format == 0)
RAMTYPE (if format == 1) MEMREQ MAX

DOTCLOCK
PIXEL
WIDTH

0 (end of table)

H_DISP = Horizontal resolution in number of characters
DACMASK = (1 shl dactype)
RAMMASK = (1 shl ramtype)
MEMREQ = The minimum memory required to support the specified resolution

and color depth (DRAM requirement shl 4) or (VRAM
requirement)

MAX DOTCLOCK = Max dot clock with the specified resolution and color depth in MHz
PIXEL WIDTH = Color depth
DACTYPE = Dactype including the subtype information
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-6 Proprietary and Confidential

Function 08h – Return Query Device Data Structure in Bytes
To determine if a video mode is supported, the following algorithm can be used:

if ((H_DISP <= horizontal disp (in char) &
(DACMASK & (1 shl dactype)) &
(MEMREQ <= current memory size) &
(MAX DOTCLOCK >= dot clock of the requested mode) &
(PIXEL WIDTH >= requested color depth))

then
the mode can be supported;

else
the mode cannot be supported

A.12 Function 08h – Return Query Device Data Structure in Bytes

This function returns the size of information table reported by function 09h so that the user
can allocate sufficient buffer size to capture the information.

A.13 Function 09h – Query Device
This function returns the full information about the controller. The query structure is listed
in Table 8-4 and Table 8-4.

To Call: AL = 08h Return Query Data Structure in Bytes
CL [0] = 0 Buffer size for header information only

= 1 Buffer size for header information and mode tables

Returns: CX = Number of bytes

To Call: AL = 09h Query Device
DX:BX = Pointer to buffer
CL [0] = 0 Return header information only

= 1 Return header information and mode table

RAGE LT PRO, RAGE Mobility, and RAGE XL specific implementation:
CL [7 - 4] = 0000b Mode table for the current active display

= 0001b Mode table for the LCD
= 0010b Mode table for the CRT
= 0100b Mode table for the TV
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-7

Function 0Ah – Return Clock Chip Frequency Table
A.14 Function 0Ah – Return Clock Chip Frequency Table

This function returns the memory clock, pixel clock and other internal clock related
information about the controller.

A.15 Function 0Bh – Program a Specified Clock Entry
This function programs the selected clock to a specified frequency.

To Call: AL = 0Ah Return clock chip frequency table

Returns: CL = Clock chip type

DX:BX = Offset pointing to the 16 words containing the pre-programmed
dot clock frequency, unit is in KHz/10 (4 significant digits)

DX:CX = Offset pointing to the table containing clock chip information in
the following format:

DB Frequency table identification
DW Minimum PCLK frequency (in KHz /10)
DW Maximum PCLK frequency (in KHz/10)
DB Extended coprocessor mode PCLK entry if <> 0ffh
DB Extended VGA mode PCLK entry if <> 0ffh
DW Reference clock frequency (in KHz/10)
DW Reference clock divider
DW Hardware specific information
DW MCLK frequency in power down mode
DW MCLK frequency in normal mode for DRAM boards
DW MCLK frequency in normal mode for VRAM boards
DW SCLK frequency
DB MCLK entry number
DB SCLK entry number
DW Coprocessor mode MCLK frequency if != 0
DW Reserved
DW 0ffh

To Call: AL = 0Bh Program a Specified Clock
CL [2 - 0] =

=
=
=

0 PCLK, dot clock
1 MCLK, memory clock
2 Reserved
4 Engine clock for separate memory clock and engine

clock BIOS
CH = Entry in the frequency table for programming PCLK
BX = Unit in Khz/10

Return: AL = Clock chip type
BX = Programming word depending on type
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-8 Proprietary and Confidential

Function 0Ch – DPMS Service, Set DPMS Mode
A.16 Function 0Ch – DPMS Service, Set DPMS Mode

This function sets the VESA DPMS compliant monitor into different power states.

A.17 Function 0Dh – Return Current DPMS State in LC
This function returns the current DPMS power state.

A.18 Function 0Eh – Set Graphics Controller Power Management
State

This function sets the controller into different power states.

A.19 Function 0Fh – Return Current Graphics Controller Power

Comments: This function is available for internal diagnostics use only and is not intended
to be used by application.

To Call: AL = 0Ch DPMS service, set DPMS mode
CL [1 - 0] =

=
=
=
=

0 Active
1 Stand-by
2 Suspend
3 Off
4 Blank the display (This is not a DPMS state)

To Call: AL = 0Dh Return current DPMS state

Returns: CL [1 - 0] =
=
=
=

0 Active
1 Stand-by
2 Suspend
3 Off

To Call: AL = 0Eh Set Graphics Controller Power Management state

Returns: CL [1 - 0] =
=
=
=

0 Active
1 Stand-by
2 Suspend
3 Off

Comments: For 3D RAGE PRO series controllers that do not have hardware APM
support, the power states achieved by this function are not equivalent to those
defined in the Intel AMP BIOS Specification Ver.1.2.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-9

Function 10h – Set the DAC to Different States
Management State

This function returns the controller’s current power states.

A.20 Function 10h – Set the DAC to Different States

This function programs the DAC to various states.

A.21 Function 11h – Return External Storage Device Information

This function programs the DAC and VFC to various states. INSTALL should use this
information to configure the data structure.

To Call: AL = 0Fh Return current Graphics Controller Power Management
State

CL [1 - 0] =
=
=
=

0 Active
1 Stand-by
2 Suspend
3 Off

To Call: AL = 10h Set the DAC to different states
CL = 80h Reserved

= 0 Set DAC to normal mode
= 1 Set DAC to sleep mode
= 2 Set VFC to mach64 (single clock) compatible mode (for

Bs only)
= 3 Set VFC to Brooktree 481 (multiple clock) compatible

mode (for Bs only)
= 4 Return current VFC settings (for Bs only), 2 or 3 as

above

To Call: AL = 11h Return External Storage Device information

Returns: CL = External data structure information
CL [7] = 1 No external data storage can be used, Write EEPROM

will not work
CL [6 - 4] =

=
=
=

000 External data is readable and writable
001 External data storage is readable but not writable
011 External data storage is not readable and writable
100 External data storage is readable and writable, the

writing has to be handled by the application program
based on device type in CL [3 - 0]

CL [3 - 0] = 0 Device type
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-10 Proprietary and Confidential

Function 12h – Short Query
A.22 Function 12h – Short Query
This function returns the base I/O address and card ID information.

A.23 Function 13h – Display Data Channel Support (DDC)

Sub-function 0 returns the DDC support information of the BIOS and CRT monitor. Use
the RAGE LT Pro, RAGE Mobility, or RAGE XL specific function 8Eh for DDC support
for flat panels.

CH = Number of read only CRT table in the storage device after the
writable entry

DL = The last 16bit writable entry in the storage device

DH [7] = 1 The BIOS has built-in CRTC parameters
DH [5] = 1 The BIOS support extended function AL = 15h

BL = Offset into the CRTC parameter table

BH = Size of the CRTC parameter table, if the number is smaller than
the one in the CRTC table, then discard the bottom ones

For INSTALL.EXE:
If CL [7] == 0, Normal Mach64 operation;
If ((CL [7] == 1) & (DH [5] == 0)), The refresh information is predefined or handled by

OEM's own program;
If ((CL [7] == 1) & (DH [5] == 1)), The refresh information can be handled through

extended function AL=15h.

To Call: AL = 12h Short Query

Returns: AX = Reserved
BX = Reserved
CL = See DX below
CH [3..0] = Card ID
DX = I/O Base Address and alias (2ECh or 1C8) if CX [0] = 0

= I/O Base Address with range of 256 if CX [0] = 1

To Call: AL = 13h Display Data Channel Support (DDC)
BL = 0 Return DDC format supported by the BIOS and monitor

Returns: BX = 0 DDC not supported
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-11

Function 13h – Display Data Channel Support (DDC)
BX [0] = 1 DDC1 supported by monitor
BX [1] = 1 DDC2B supported by monitor

AL [0] = 1 DDC1 supported by BIOS
AL [1] = 1 DDC2B supported by BIOS
AL [2] = 1 DDC2AB supported by BIOS
AL [6] = 1 BIOS support detailed EDID timing at power up
AL [7] = 1 BIOS can use EDID information to setup the board at

power up
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-12 Proprietary and Confidential

Function 13h – Display Data Channel Support (DDC)
Sub-function 1 returns the 128 byte EDID information.

Sub-function 2 performs master read operation from the DDC 2B monitor.

Sub-function 3 performs master write and slave read operation with the DDC 2B monitor.

To Call: AL = 13h Display Data Channel Support (DDC)
BL = 1 Return EDID data (support) DDC1/DDC2B only, first

EDID block for DDC2B)
CX = Buffer size
DX:DI = Pointer to buffer

Comments: The BIOS does not check the validity of the EDID information captured from
the monitor. It is the caller who must verify the EDID information before using
it.

To Call: AL = 13h Display Data Channel Support (DDC)
BL = 2 Read buffer (only support DDC2B or DDC2AB), master

read
CX = Buffer size
DX:DI = Pointer to buffer (monitor address in first byte of DX:DI when

calling)

To Call: AL = 13h Display Data Channel Support (DDC)
BL = 3 Write buffer (only support DDC2B or DDC2AB), slave

read, the read is supported if DDC2AB is supported
CX = Buffer size
DX:DI = Pointer to buffer
DX:[DI].. DX:[DI + CX - 1] = Data to write
DX:[DI + CX] = Number of bytes to read after write
DX:[DI + CX + 1] = Time-out for the read in msec

Returns: DX:DI = Data read if required

Comments: The slave read operation is supported only in the DDC2AB enabled BIOS.
Sub-function 0 should be used to check for DDC2AB support before using the
slave read operation.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-13

Function 14h – Save and Restore Graphics Controller States
Sub-function 4 returns the DDC support information of the BIOS.

A.24 Function 14h – Save and Restore Graphics Controller States
This function saves and restores the controller’s register setting. Depending on the size of
the BIOS, this function may not be supported in all BIOS’s. The caller should check the
return code from sub-function 0 before using the Save and Restore sub-functions.

To Call: AL = 13h Display Data Channel Support (DDC)
BL = 4 Return DDC format supported by the BIOS

Returns: BX [0] =
=

1
0

DDC2B used for communication
DDC1 used for communication

AL [0] = 1 DDC1 supported by BIOS
AL [1] = 1 DDC2B supported by BIOS
AL [2] = 1 DDC2AB supported by BIOS
AL [6] = 1 BIOS support detailed EDID timing at power up
AL [7] = 1 BIOS can use EDID information to setup the board at

power up

Comments: Similar to Sub-function 0 except for no DDC monitor detection performing. It
allows avoiding the monitor interference during DDC detection applied on non
DDC monitor.

To Call: AL = 14h Save and restore Graphics Controller states
CL = 0 Return buffer size required in number of bytes

CX = Buffer size
BX = Save and restore mechanism used

BX [0] = 1 Can pass in segment point to last 64K of
VGA (0b000h:0)or Linear aperture;

BX [1] = 1 Can pass in segment pointer pointing to
0:0 with full access;

BX [2] = 1 Can pass in segment pointer pointing to
beginning of memory aperture;

BX [3] = 1 Can pass in segment pointer pointing to
beginning of memory mapped location;
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-14 Proprietary and Confidential

Function 15h – Refresh Rate Support
A.25 Function 15h – Refresh Rate Support
This function manages the refresh rate information of various display modes.

To Call: AL = 14h Save and restore Graphics Controller states
CL = 1 Save controller states

DX:DI = Pointer to buffer
BX = Save and restore mechanism used

If (BX [0] = 1 in the CL = 0 function) SI = segment pointer to last 64K of VGA(0b000h:0) or
Linear aperture

If (BX [1] = 1 in the CL = 0 function), SI = segment pointer to 0:0 with full access
If (BX [2] = 1 in the CL = 0 function), SI = segment pointer to memory aperture
If (BX [3] = 1 in the CL = 0 function), SI = segment pointer to memory map location

To Call: AL = 14h Save and restore Graphics Controller states
CL = 2 Restore controller states

DX:DI = Pointer to buffer
BX = Save and restore mechanism used

If (BX [0] = 1 in the CL = 0 function) SI = segment pointer to last 64K of VGA(0b000h:0) or
Linear aperture

If (BX [1] = 1 in the CL = 0 function), SI = segment pointer to 0:0 with full access
If (BX [2] = 1 in the CL = 0 function), SI = segment pointer to memory aperture
If (BX [3] = 1 in the CL = 0 function), SI = segment pointer to memory mapped location

To Call: AL = 15h Refresh Rate support
BL = 0 Get current refresh rate information

To Call: AL = 15h Refresh Rate support
BL = 1 Change current refresh rate information

To Call: AL = 15h Refresh Rate support
BL = 2 Save refresh rate information
DX:DI = Pointer to buffer (minimum 20 bytes required and is terminated

by 0FFFFh)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-15

Function 15h – Refresh Rate Support
Table 8-4 Refresh Rate Structure

Offset
(byte) Content

0 12h (640x480), Refresh mask
bit 6
bit 5
bit 4

=
=
=

72Hz
75Hz
85Hz

If bit 4, 5, 6 = 0 Default is 60Hz.

1 6Ah (800x600), Refresh mask
bit 4
bit 3
bit 2
bit 1
bit 0

=
=
=
=
=

85Hz
56Hz
60Hz
72Hz
75Hz

2 55h (1024x768), Refresh mask
bit 4
bit 3
bit 2
bit 1
bit 0

=
=
=
=
=

85Hz
87Hz, Interlaced
60Hz
70Hz
75Hz

3 83h (1280x1024), Refresh mask
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

=
=
=
=
=
=

85Hz
43Hz
47Hz
60Hz
70Hz
75Hz

 4 84h (1600x1200), Refresh mask
 5 mode #(1152), Refresh mask

0FFFFh

To Call: AL = 15h Refresh Rate support
BL = 3 Set current external CRT table state
BH = 1 Use external CRTC table

= 0 Do not use external CRTC table

To Call: AL = 15h Refresh Rate support
BL = 4 Current external CRT table state
AL [0] = 1 External CRTC table will be used by the BIOS

= 0 External CRTC table will not be used by the BIOS
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-16 Proprietary and Confidential

Function 16h – Video Feature Support
A.26 Function 16h – Video Feature Support

This function returns the multimedia hardware information for display adapters which
include TV tuners or audio chips. It is supported in 3D RAGE Pro, RAGE LT Pro, and
RAGE IIC BIOS implementations that use Revision 0 of the ATI Multimedia BIOS
Table.

This function should not be used for new designs. Instead, diagnostics and device drivers
are now expected to search for the hard-coded Multimedia Table as documented in the
BIOS Table for ATI Multimedia Devices Requirements Specification.

To Call: AL = 15h Refresh Rate support
BL = 5 Restore factory default refresh rate information

To Call: AL = 16h Video Feature Support

Returns: AL = 0 Format type
DX:DI = Pointer to table

Comments: Multimedia hardware information is not present for all BIOS. Users should
check function return code before using it.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-17

Function 16h – Video Feature Support
Table A-3 Video Feature Structure

Offset
(byte) Content

0

bits [7:0] = Tuner Type
0x00 = No tuner installed
0x01 = Philips FI1236 MK1 NTSC M/N North America (AIW only)
0x02 = Philips FI1236 MK2 NTSC M/N Japan
0x03 = Philips FI1216 MK2 PAL B/G
0x04 = Philips FI1246 MK2 PAL I
0x05 = Philips FI1216 MF MK2 PAL B/G, SECAM L/L’
0x06 = Philips FI1236 MK2 NTSC M/N North America
0x07 = Philips FI1256 MK2 SECAM D/K
0x08 = Philips FM1236 MK2 NTSC M/N North America
0x09 = Philips FI1216 MK2 PAL B/G - External Tuner BOD
0x0A = Philips FI1246 MK2 PAL I - External Tuner BOD
0x0B = Philips FI1216 MF MK2 PAL B/G, SECAM L/L' - External

Tuner BOD
0x0C = Philips FI1236 MK2 NTSC M/N North America - External

Tuner BOD

0

bits [7:0]
(cont’d)

0x0D - 0x0F = Reserved
0x10 = Alps TSBH5 NTSC M/N North America
0x11 = Alps TSCH5 NTSC M/N North America
0x12 = Alps TSCH5 NTSC M/N North America with FM
0x13 - 0x1F = Reserved
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-18 Proprietary and Confidential

Function 16h – Video Feature Support
1

bits [1:0] = Video Input Connector
00 = 4-pin (shared composite/S-video, no audio or +12V)
01 = 7-pin (shared composite/S-video, audio and +12V)
10 = 8-pin (separate composite/S-video, audio, no +12V)
11 = Reserved

bits [3:2] = Video Output Connector
00 = 4-pin (shared composite/S-video, no audio)
01 = 7-pin (shared composite/S-video, audio)
10 = 8-pin (separate composite/S-video, audio)
11 = 7- or 8-pin for RGB SCART (separate composite/S-video, no

audio)
bit 4 = CD Input Connector

0 = Not installed
1 = Installed

bit 5 = CD Output Connector
0 = Not installed
1 = Installed

bits [7:6] = Video Pass-Through Circuit
00 = Not installed
01 = Tuned for NTSC
10 = Tuned for PAL
11 = Switchable (NTSC or PAL)

2

bits [2:0] = Video Decoder Type
000 = Not Installed
001 = Bt819
010 = BT829
011 = BT829A
100 = Philips 7111
101 = Philips 7112
110 - 111 = Reserved

Table A-3 Video Feature Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-19

Function 16h – Video Feature Support
2

bits [5:3] = Video Decoder Number of Crystals, Standards Supported
000 = NTSC and PAL Crystals Installed (for BT8xx)
001 = NTSC Crystal Only (for BT8xx)
010 = PAL Crystal Only (for BT8xx)
011 = NTSC, PAL, SECAM (for BT829)
110 = RAGE THEATER
111 = Reserved

bits [7:6] = Video Out Crystal Frequency
00 = TVOut not Installed
01 = 28.63636 MHz Crystal
10 = 29.4982713 MHz Crystal
11 = 27.0 MHz Crystal

3

bits [3:0] = Audio Chip
0x0 = Philips TEA5582 NTSC Stereo, no DBX,
 no Volume control
0x1 = Mono with audio mux
0x2 = Philips TDA9850 NTSC N.A. Stereo, DBX, EEPROM,
 mux, no Volume control
0x3 = Sony CXA2020S Japan NTSC Stereo, mux,

no Volume control
0x4 = ITT MSP3410D Europe Stereo, Volume, Internal mux
0x5 = Crystal CS4236B
0x6 = Philips TDA9851 NTSC stereo, volume control, no DBX,

no mux
0x7 = ITT MSP3415 (Europe)
0x8 = ITT MSP3430 (North America)
0x9 - 0xE = Reserved
0xF = No Audio Chip Installed

bit [7:4] = ATI Product Type
0x0 = ATI Prototype Board
0x1 = ATI All-in-Wonder
0x2 = ATI All-in-Wonder Pro, no MPEG/DVD decoder
0x3 = ATI All-in-Wonder Pro, CD1.1 or similar
 MPEG/DVD decoder on MPP
0x4 = ATI All-in-Wonder Plus
0x5 - 0xF = Reserved

4

bit [7:0] = OEM ID
0x00 = ATI product
0x01 = Intel product
0x02 = Apricot product
0x03 - 0xFF = Reserved

Table A-3 Video Feature Structure (Continued)

Offset
(byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-20 Proprietary and Confidential

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture

Capability

Highlighted bit-fields (in bold/blue) correspond to the first revision of the board (NTSC
with all features).

Default board ID will be: 00 00 00 00 00 4A 7A 01 (hex).

A.27 Function 17h – Enable / Disable Video Input Capture Mode
and Return Video Capture Capability

This function manages and returns information of the video capture support of the
controller.

Sub-function 00h – Enable Video Input Capture Mode

Sub-function 01h – Disable Video Input Capture Mode

Sub-function 02h – Return Video Capture Capability Table

5

bit [7:0] = Revision (indicates OEM revision level, meaning changes with
OEM ID code)

0x00 = Intel OEM ID All-in-Wonder, All-in-Wonder Pro rev 1
0x01 = Intel OEM ID -used-
0x02 - 0xFF = Reserved

6

bit [3:0] = Voltage Regulator
00 = No Tuner Power Down Feature
01 = Tuner Power Down Feature
10 = Reserved
11 = Reserved

6

bit [5:4] = Teletext
00 = No Teletext
01 = Teletext Philips SAA5281
10 = Reserved
11 = Reserved

bit [7:6] = Reserved
7 bit [7:0] = Reserved

To Call: AL = 17h Enable / Disable video input capture and Return video
capture capability table

BL = 00h Enable video input capture

Table A-3 Video Feature Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-21

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture Capability
Format Type 0

To determine if Video Capture is supported, use the following algorithm:

BL = 01h Disable video input capture
BL = 02h Return video capture capability table

Returns: DX:BX = Segment and offset address to a table specifying the maximum
capture width for “Auto Continuous” capture mode and “Host
Triggered” capture mode.

The table is terminated by 0xff in the first column
DX:[BX - 1] = Number of bytes per row
DX:[BX - 2] = Format type

AL = Format type

Table A-4 Format Type 0

MEM_SIZE & COLOR_DEPTH DOT CLOCK (MHz) MAX CAPTURE WIDTH

0xff (end of table)

MEM_SIZE &
COLOR_DEPTH = (Memory size << 4) | (color_depth)
DOT CLOCK (PCLK) = Video dot clock in MHz
MAXIMUM CAPTURE
WIDTH

= (Continuous Capture source width << 4) | (Single Frame
Capture source width)

== 0, Video capture cannot be supported.
== 1, Continuous capture width < = 160

host-triggered capture width < = 160.
== 2, Continuous capture width < = 240

host-triggered capture width < = 240.
== 3, Continuous capture width < = 320

host-triggered capture width < = 352.
Note: Each entry in the table is one byte long.

1. If an empty table is returned,
maximum continuous capture width is 320 and maximum host-triggered capture is
352 for all supported display modes.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-22 Proprietary and Confidential

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture

Capability

Format Type 1

The resolution information is added to format type 0. This helps to bring out more capture
support for high resolution display modes.

2. If (memory_size >= (MEM_SIZE >> 4) &
color_depth == (COLOR_DEPTH & 0x0f) &
dot clock <= DOTCLOCK)

then
the maximum video capture width size is in MAXIMUM CAPTURE WIDTH.

3. If no match can be found in the table,
maximum continuous capture width is 320 and maximum host-triggered capture is
352 for all supported display modes.

Table A-5 Format Type 1

MEM_SIZE & COLOR_DEPTH DOT CLOCK
(MHz)

MAXIMUM
CAPTURE WIDTH RESOLUTION

0xff (end of table)

MEM_SIZE &
COLOR_DEPTH = (Memory size << 4) | (color_depth)
DOT CLOCK (PCLK) = Video dot clock in MHz
MAXIMUM CAPTURE
WIDTH

= (Continuous Capture source width << 4) | (Single Frame
Capture source width)

== 0, Video capture cannot be supported.
== 1, Continuous capture width < = 160

host-triggered capture width < = 160.
== 2, Continuous capture width < = 240

host-triggered capture width < = 240.
== 3, Continuous capture width < = 320

host-triggered capture width < = 352.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-23

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture Capability
To determine if Video Capture is supported, use the following algorithm:

RESOLUTION = Display mode information that the current table entry
apply
If bit 0 set, current entry applied for display width < = 640
If bit 1 set, current entry applied for display width = 800
If bit 2 set, current entry applied for display width = 1024
If bit 3 set, current entry applied for display width = 1152
If bit 4 set, current entry applied for display width = 1280
If bit 5 set, current entry applied for display width = 1600
Bits 6 and 7 are reserved.
More than one bit can be set for table entry supporting

multiple resolutions.
Note: Each entry in the table is one byte long.

1. If an empty table is returned,
maximum continuous capture width is 320 and maximum host-triggered capture is
352 for all supported display modes.

2. If ((memory_size >= (MEM_SIZE >> 4) &
color_depth == (COLOR_DEPTH & 0x0f) &
dot clock <= DOTCLOCK) &
corresponding display width bit in RESOLUTION is set),

then
the maximum video capture width size is in MAXIMUM CAPTURE WIDTH.

3. If no match can be found in the table,
maximum continuous capture width is 320 and maximum host-triggered capture is
352 for all supported display modes.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-24 Proprietary and Confidential

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture

Capability

Format Type 2

This format does not use a table to store maximum capture width information. The width
supported is generated dynamically and is returned in register CX. But an empty table is
returned for backward compatibility reason.

To Call: AL = 17h Enable / Disable video input capture and Return video
capture capability table

BL =
=
=

0
1
2

Enable video input capture
Disable video input capture
Return video capture capability table

Returns: DX:[BX] = Segment and offset address to an empty table terminated by a
0xff in the first column

DX:[BX - 1] = 0 Number of bytes per row
DX:[BX - 2] = 2 Format type

AL = 2 Format type

CX

=

Maximum capture width supported by the current display mode
for the following scaler source format:

15 bpp aRGB 1555, 16 bpp RGB 565 YUV 9, YUV12, VYUY422
and YVYU422

0, 160, 240, 320, 352, 384, 640, or 720
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-25

Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture Capability
Sub-function 03h –- Return Maximum Capture Width of the Specified
Display Mode for the following Scaler Source
Format: 15 bpp aRGB 1555, 16 bpp RGB 565,
YUV 9, YUV12, VYUY422 and YVYU422

Sub-function 04h –- Return Maximum Capture Width of the Specified
Display Mode for the following Scaler Source
Format: 32 bpp aRGB 8888

The following two sub-functions are new for RAGE PRO series. For this new format,
sub-functions 00h, 01h and 02h return the capture support for current display mode only.
Sub-functions 03h and 04h provide capture support information for other display modes.

The format type must be checked prior to using the capture width data returned in
register CX.

To Call: AL = 17h Enable / Disable video input capture and Return video
capture capability table

BL = 03 Return Maximum Capture Width of the Specified
Display Mode for the following Scaler Source
Format: 15 bpp aRGB 1555, 16 bpp RGB 565,
YUV 9, YUV12, VYUY422 and YVYU422

BL = 04 Return Maximum Capture Width of the Specified
Display Mode for the following Scaler Source
Format: 32 bpp aRGB 8888

CH = Color depth
CL = Dot clock (rounded up value, e.g. 25.18Mhz becomes 26,

44.9Mhz becomes 45)
DL = Character count of the display width

Returns: DX:[BX] = Segment and offset address to an empty table terminated by a
0xff in the first column

DX:[BX - 1] = 0 Number of bytes per row
DX:[BX - 2] = 2 Format type

AL = 2 Format type
CX

=

Maximum capture width supported by the specified display
mode

0, 160, 240, 320, 352, 384, 640, or 720
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-26 Proprietary and Confidential

Function 18h – Reserved for UMA
A.28 Function 18h – Reserved for UMA

A.29 Function 19h – TVOut Hooks (not supported in LT PRO)

Application should use the function below to determine whether external driver/TSR
support for TVOut is required.

To Call: AL = 19h TVOut Hooks
CL = 0 Return if TVOut BIOS is active and in service

Returns: AL [0] = 1 This board should contain TVOut BIOS service or
TVOut Hardware (e.g. ImpacTV or RAGE THEATER
ASIC)

AL [1] =
=

1
0

TVOut BIOS is active
TVOut BIOS is disabled or TVOut Hardware not

installed
If AL [1] = 1 and AL[0] = 1 = Standard TVOut BIOS service (70h -7Fh) should be

used

The extended services listed below might not be available:
If AL [1] = 0 and AL[0] = 0 or

error code is returned in this
function = No TVOut support is required

If AL [1] = 0 and AL[0] = 1 = The board should have TVOut Hardware.
Yet TVOut BIOS service is disabled due to the system
BIOS error or TVOut hardware not being installed

To Call: AL = 19h TVOut Hooks
CL = 1 TVOut Hardware detection

AL [0] =
=

0
1

No TVOut Hardware is found
TVOut Hardware is detected

BX = TVOut Hardware setting if AL [0] = 1

CL [0] = 0 or 1 TVOut Address

To Call: AL = 19h TVOut Hooks
CL = 2 Re-initialize the graphics controller DSP values based

on the new CRTC parameter setting
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-27

Query Structure
A.30 Query Structure
The Query Strucrure is used by Fuction 08h and Function 09h

DX:BX = TVOut Hardware setting if AL [0] = 1

CL [0] = Pointer to parameter table (see for structure as function AL = 0,
CH = 81h)

To Call: AL = 19h TVOut Hooks
CL = 3 Get current mode dot clock

Returns: BX = Dot clock

Table A-6 Query Structure

Offset
(byte) Content

0 - 1 Size of structure in bytes
2 Revision of structure
3 Number of mode tables

4 - 5 Offset in bytes to mode tables
6 Size of each mode table in bytes

7 VGA Type:
0
1

=
=

Disabled
Enabled
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-28 Proprietary and Confidential

Query Structure
8 - 9 ASIC identification
bits [15:0] =

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

ASIC type
0xD700, GX-C
0xD701, GX-D
0xD702, GX-E
0xD703, GX-F
0x57xx, CX
0x43xx, CT
0x4341, CT-SGS
0x4309, CT-NEC /C
0x430A, CT-NEC/D
0x45xx, ET
0x47xx, GT
0x4700, GT-A2/NEC
0x4701, GT-B/SGS
0x473A, RAGE IIC
0x475A, GT-B/UMC
0x475C, 3D RAGE PRO
0x479A, RAGE II+
0x47xx, RAGE XL
0x47xx, RAGE XC

8 - 9 bits [15:0]
(cont’d)

=
=
=
=
=
=
=
=
=
=
=

ASIC type (continued)
0x4C00, RAGE LT
0x4Cxx, LT
0x4CDC, 3D RAGE LT PRO
0x53xx, ST
0x56xx, VT
0x5608, VT-A3 NEC
0x5648, VT-A4 NEC
0x5640, VT-A4 SGS
0x5601, VT-B/SGS
0x569A, VTB/UMC

0Ah VGA Boundary:
0
1
2
3
4
10h

=
=
=
=
=
=

Full access
256K
512K
768K
1M
No access through VGA

0Bh Memory Size:

Table A-6 Query Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-29

Query Structure
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

512K
1M
2M
4M
6M
8M
12M
16M
1.5M
2.5M
3.0M
3.5M
5M
7M
10M
14M

0Ch bits [3:0]
bits [7:4]

DAC Type
DAC subtype
00h = Internal DAC
xxx1xxxb = Internal DAC
01h = IBM RGB514
02h = TLC 34075 / ATI68875
72h = TVP3026
03h = Brooktree BT476/8
04h = Brooktree BT481
14h = AT&T20C490, AT&T20C491,AT&T20C493,

SC15025/15026, IMS-G174, MU9C4910,
MU9C1880

05h = ATI68860 RevB
15h = ATI68860 RevC
75h = TVP3026
06h = STG1700
16h = AT&T20C498
07h = STG1702
17h = SC15021
27h = AT&T21C498
37h = STG1703
47h = Chrontel CH8398
57h = AT&T20C408

0Dh Memory Type (for ASIC types other than RAGE Mobility and RAGE XL/XC):

Table A-6 Query Structure (Continued)

Offset
(byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-30 Proprietary and Confidential

Query Structure
bits [7:4]

bits [3:0]

=
=

0 The memory may support block write
1 The memory does not support block write

1 = DRAM
2 = EDO DRAM
3 = BRRAM / PSEUDO EDO / HYPER PAGE EDO
4 = SDRAM
5 = SGRAM
6 = WRAM

0Dh Memory Type (for RAGE Mobility and RAGE XL/XC):
bits [7:4]

bits [3:0]

=
=

0 The memory may support block write
1 The memory does not support block write

0-3 = Reserved
4 = SDRAM 1:1 64 bit
5 = SGRAM 1:1 64 bit
6 = SDRAM 2:1 32 bit
7 = SGRAM 2:1 32 bit

0Eh Bus Type:
0
1
2
3
4
5
6
7

=
=
=
=
=
=
=
=

ISA
EISA
Reserved
Reserved
Reserved
VLB non-multiplexed
VLB
PCI

0Fh bit 7
bit 6

Enable composite sync
Enable sync on green

10h - 11h Aperture address in MB (0-4095)
12h Aperture configuration (see also AL = 06h “Short Query Function”, page -4)
13h Color depth support

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

=
=
=
=
=
=
=
=

1 Support 32 bpp (unpack 24 bpp in xRGB, x is byte 0)
1 Support 32 bpp (unpack 24 bpp in BGRx, B is byte 0)
1 Support 32 bpp (unpack 24 bpp in RGBx, R is byte 0)
1 Support 32 bpp (unpack 24 bpp in xBGR, x is byte 0)
1 Support BGR in 24bpp
1 Support RGB in 24bpp
1 Support 16 bpp, 555
1 Support 16 bpp, 565

14h RAMDAC support feature

Table A-6 Query Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-31

Mode Table Structure
A.31 Mode Table Structure
Mode tables immediately follow the device status table. Use the forward pointer to
reference mode tables, as the device status table may expand in the future. It is possible to
have no modes installed. Typically, between 2 and 7 mode tables will be returned.

bit 7
bit 6
bit 5
bit 4

=
=
=
=

1 Support sync on green
1 Support gamma correction
1 Support 256 gray scale
1 Support sleep mode

15h bit 0 = I/O address type (see extended function AL = 12h on page -11)
16h-17h Offset into current mode table if non-zero (not implemented)
18h-19h I/O base address
1Ah-1Bh Offset into DAC hsync pipeline delay adjust information
1Ch-1Fh Reserved

Table A-7 Installed Mode Tables

Offset
(byte) Content

Installed Mode Table 1
0 - 1 Horizontal display resolution, in pixels
2 - 3 Vertical display resolution, in scan lines

4 Maximum pixel depth
5 Mode number of this mode table

6 - 7
Offset into EEPROM

=
<>

0 Table is generated from VGA parameters
0 Offset into EEPROM table

8 - 9 Reserved
0Ah-0Bh Reserved

Table A-6 Query Structure (Continued)

Offset
(byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-32 Proprietary and Confidential

Mode Table Structure
0Ch-0Dh

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bits [7:4]
bits [3:0]

=
=
=
=
=
=
=
=
=
=

Reserved
Use external crystal if ATI18818 is used
Enable Mux mode
Enable Composite Sync
Enable hsync delay in BIOS
Reserved, used for TLC34075
Enable interlace
Enable double scan
Mode table type: 0 for external; 1 for internal
Reserved

0Eh CRTC_H_TOTAL
0Fh CRTC_H_DISP
10h CRTC_H_SYNC_STRT
11h CRTC_H_SYNC_WID

12h-13h CRTC_V_TOTAL
14h-15h CRTC_V_DISP
16h-17h CRTC_V_SYNC_STRT

18h CRTC_V_SYNC_WID
19h CLOCK_CNTL

1Ah-1Bh Dot Clock for coprocessor mode, for programmable clock chip

1Ch-1Dh

bits [15:12]
bits [11:8]
bits [7:4]
bits [3:0]

=
=
=
=

H_TOTAL in pixels format, used for TVOut only
CRTC_H_SYNC_DLY
OVR_WID_RIGHT
OVR_WID_LEFT

1Eh-1Fh OVR_WID_TOP, OVR_WID_BOTTOM
20h-21h OVR_CLR_B, OVR_CLR_8
22h-23h OVR_CLR_G, OVR_CLR_R

Installed Mode Table 2
header [6] -
2*header [6]

Entries definition same as in Installed Mode Table 1 above

.

.

.

Installed Mode Table n
N*header [6] -

(N+1)*header [6]
Entries definition same as in Installed Mode Table 1 above

Table A-7 Installed Mode Tables (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-33

EEPROM Data Structure
A.32 EEPROM Data Structure

Table A-8 EEPROM Data Structure

Offset
(byte) Content

0 bits [15:0] = EEPROM Write Counter

1
bits [15:8]
bits [7:0]

=
=

Checksum value for DDC data
EEPROM Checksum, modular 8 of 8bit data, the summation of all

the entries in the EEPROM must be 0

2
bits [15:0] = Reserved.

No application program should touch this entry.
Factory default should set this field to 0

3
bits [15:8]
bits [7:4]
bits [3:0]

=
=
=

Reserved
1 DDC information (DDC initialization enable)
EEPROM table revision

4 bits [15:0] = Custom monitor indices

5

bits [15:9]
bit 8

bit 7

bit 6
bit 5
bit 4
bits [3:2]
bit 1
bit 0

=
=

=

=
=
=
=
=
=

1280x1024 Refresh Rate information
1 Select 1280x1024 in 75Hz (used with built-in CRTC

 parameter table)
1 Use stored 640x480 coprocessor parameters for

 coprocessor mode
1 Enable 640x480 72Hz
1 Enable 640x480 75Hz
1 Enable 640x480 85Hz
Reserved
Enable sync on green
Enable composite sync

6

bits [15:8]
bit 7

bit 6
bit 5
bit 4

bit 3

bit 2

bit 1

bit 0

=
=

=
=
=

=

=

=

=

Reserved
1 Use stored 800x600 Coprocessor parameters for

 coprocessor mode
Reserved
1 Reserved
1 Select 800x600 in 85Hz (used with built-in CRTC

 parameter table)
1 Select 800x600 in 56Hz (used with built-in CRTC

 parameter table)
1 Select 800x600 in 60Hz (used with built-in CRTC

 parameter table)
1 Select 800x600 in 72Hz (used with built-in CRTC

 parameter table)
1 Select 800x600 in 75Hz (used with built-in CRTC

 parameter table)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-34 Proprietary and Confidential

EEPROM Data Structure
7

bits [15:8]
bit 7

bits [6:4]
bit 3

bit 2

bit 1

bit 0

=
=

=
=

=

=

=

Reserved
1 Use stored 1024x768 Coprocessor parameters for

 coprocessor mode
Reserved
1 Select 1024x768 in 87Hz Interlaced (used with built-in

 CRTC parameter)
1 Select 1024x768 in 60Hz (used with built-in CRTC

 parameter table)
1 Select 1024x768 in 70Hz (used with built-in CRTC

 parameter table)
1 Select 1024x768 in 75Hz (used with built-in CRTC

 parameter table)

8

bits [15:8]

bits [7:6]

bit 5
bit 4

bit 3

bit 2

bit 1

bit 0

=

=

=
=

=

=

=

=

Power Up Video Mode
03h VGA color - secondary
05h VGA monochrome - secondary
09h VGA color - primary
0Bh VGA monochrome - primary

Monochrome Mode Color Select
0 White
1 Green
2 Amber

Dual Monitor Enable
Font Selection at power up
0 8x14 or 9x14
1 8x16 or 9x16

VGA Bus I/O
0 8 bits
1 16 bits

Zero Wait State Ram
0 Disable
1 Enable

Zero Wait State ROM
0 Disable
1 Enable

16-bits ROM
0 Disable
1 Enable

Table A-8 EEPROM Data Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-35

EEPROM Data Structure
9

bits[15:14]

bits [13:8]
bits [7:6]
bits [5:4]

bit 3
bits [2:0]

=

=
=
=

=
=

Host data transfer width
0 Auto select
1 16 bit
2 8 bit
3 8 bit host / 16bit other
Monitor Code
Reserved
VGA boundary
0 No boundary
1 512K
2 1M
Monitor Alias enable
Monitor Alias

A

bits [15:4]
bits [3:0]

=
=

Aperture Location (in MB)
Aperture Size (will not be used by the BIOS)

If Aperture Location is non-zero, assuming that aperture will be
enabled, the Aperture size will be based on Video memory size

B

bits [15:8]

bits [7:0]

=

=

Mouse address
00h Mouse disable
08h Secondary address selected
18h Primary address selected
Interrupt Level
20h = IRQ 5
28h = IRQ 4
30h = IRQ 3
38h = IRQ 2

0Ch-1Dh = Reserved
1Fh-2Dh = CRT Parameter Table 1
2Eh-3Ch = CRT Parameter Table 2
3Dh-4Bh = CRT Parameter Table 3
4Ch-5Ah = CRT Parameter Table 4
5Bh-69h = CRT Parameter Table 5
6Ah-78h = CRT Parameter Table 6
79h-87h = CRT Parameter Table 7
88h-96h = CRT Parameter Table 8
97h-A5h = CRT Parameter Table 9
A6h-B4h = CRT Parameter Table 10
B5h-C3h = CRT Parameter Table 11
C4h-D2h = CRT Parameter Table 12

Table A-8 EEPROM Data Structure (Continued)

Offset
(byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-36 Proprietary and Confidential

CRT Parameter
A.33 CRT Parameter

D3h-E1h = CRT Parameter Table 13
E2h-F0h = CRT Parameter Table 14
F1h-FFh = CRT Parameter Table 15

Table A-9 RAGE PRO CRT Parameter Table

Offset
(word) Content

0 bits [15:8]
bits [7:0]

=
=

Video Mode Select 1 / Reserved
Video Mode Select 2 / Reserved

1 bits [15:8]
bits [7:0]

=
=

Video Mode Select 3 / Video Mode Select
CRT Refresh Rate bit mask / (bit 7 = 1 if the parameter is in

coprocessor mode)

2

bits [15:14]
bit 13
bit 12
bit 11
bit 10
bit 9
bit 8
bit 7
bit 6
bit 5
bit 4

bits [3:0]

=
=
=
=
=
=
=
=
=
=
=

=

Reserved
Enable Mux mode
Enable Composite Sync
Enable Hsync delay adjust in BIOS
Reserved, used for TLC34075
Enable interlace
Enable double scan
Vertical Sync Polarity (VGA only)
Horizontal Sync Polarity (VGA only)
Reserved (used by INSTALL.EXE)
CRT Usage (VGA only):
 0 = Use Sync polarities only
 1 = Use all CRT parameters
Reserved

3 bits [15:8]
bits [7:0]

=
=

MAX_SCAN_LINE(CRT09) / CRTC_H_DISP
H_TOTAL(CRT00) / CRTC_H_TOTAL

4 bits [15:8]
bits [7:0]

=
=

H_RETRACE_END(CRT05) / CRTC_H_SYNC_WID
H_RETRACE_STRT(CRT04) / CRTC_H_SYNC_STRT

5 bits [15:8]
bits [7:0]

=
=

V_RETRACE_END(CRT11) / CRTC_V_TOTAL
V_RETRACE_STRT(CRT10) / CRTC_V_TOTAL

6 bits [15:8]
bits [7:0]

=
=

H_BLANK_END(CRT03) / CRTC_V_DISP
H_BLANK_STRT(CRT02) / CRTC_V_DISP

Table A-8 EEPROM Data Structure (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-37

Scratch Registers
A.34 Scratch Registers

7 bits [15:8]
bits [7:0]

=
=

V_BLANK_END(CRT16) / CRTC_V_SYNC_STRT
V_BLANK_STRT(CRT15) / CRTC_V_SYNC_STRT

8

bits [15:8]

bits [7:0]

=

=

CRTC_OVERFLOW(CRT07) / CLOCK_CNTL
(If == 0ffh or == programmable entry in clock chip, use Dot Clock in

entry 9 and programmable entry in Dot Clock)
V_TOTAL(CRT06) / CRTC_V_SYNC_WIDTH

9 bits [15:8]
bits [7:0]

=
=

V_DISP_END(CRT12) / Dot Clock
CRT_MODE(CRT17) / Dot Clock

A

bits [15:12]
bits [11:8]
bits [7:4]
bits [3:0]

=
=
=
=

Reserved
CRTC_H_SYNC_DLY
OVR_WID_RIGHT
OVR_WID_LEFT

B bits [15:0] = OVR_WID_TOP, OVR_WID_BOTTOM
C bits [15:0] = OVR_CLR_B, OVR_CLR_8
D bits [15:0] = OVR_CLR_G, OVR_CLR_R
E bits [15:0] = Reserved

Table A-10 Scratch Registers

Scratch Register Content
SCRATCH_REG0 (base address +80h)

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bits [1:0]

=
=
=
=
=
=
=

Internal 1600 CRTC parameter will be used
640x480 72Hz
640x480 75Hz
640x480 85Hz
TVOut, ON/OFF state
Reserved
Graphics controller power management states

SCRATCH_REG0 + 1 800x600 refresh rate information
(base address + 81h)
bit 7
bits [6:0]

=
=

External CRTC table indicator
800x600 refresh mask

SCRATCH_REG0 + 2 Reserved (can be 1280x1024)
(base address + 82h)
bit 7
bit 6
bits [5:0]

=
=
=

DDC2 detected state
Reserved
1280x1024 refresh mask

Table A-9 RAGE PRO CRT Parameter Table (Continued)

Offset
(word) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-38 Proprietary and Confidential

Scratch Registers
SCRATCH_REG0 + 3 1024x768 refresh rate information
(base address + 83h)
bit 7
bits [6:0]

=
=

Not used
1024x768 refresh mask

SCRATCH_REG1 ROM location
(base address + 84h)

SCRATCH_REG1 + 1 (base address + 85h)
bits [7:6]
bits [5:4]
bit 3
bit 2

bit 1
bit 0

=
=
=
=

=
=

Not used
Feature connector information
VBE20 used
If set, disable the programming of DAC to VGA mode

when INT 10h is called. For RAGE LT, Mobility,
XL/XC, when set it indicates to the BIOS that
Windows NT is running. This is used for a bug fix
in the video mode setting under Windows NT.

Reserved
Sync on green enable. Not used for RAGE LT,

RAGE Mobility, or RAGE XL/XC.
SCRATCH_REG1 + 2 (base address + 86h)

bits [7:6]
bit 5
bit 4
bit 3
bit 2

bit 1
bit 0

=
=
=
=
=

=
=

CRTC pitch size
Mux mode
Enable gamma correction or 256 color grey scale
32bpp color orientation information
TLC34075 output clock select or TVP3026 15/16bpp

information, VGA Emulation State
32bpp color orientation information
Current gamma correction or 256 color state

SCRATCH_REG1 + 3 (base address + 87h)
TVOut Information (3D RAGE PRO, RAGE IIC, 3D RAGE LT PRO,

RAGE Mobility, and RAGE XL)
or Programmable Pixel Clock (older controllers with external clock

chip)
or Reserved (RAGE XC or no-TVOut BIOS)

If used for TVOut Info:
bit 7
bit 6
bit 5
bit 4
bits [3:0]

=
=
=
=
=

TV is connected if set
TV / CRT switch request flag
TV / CRT auto switch flag
Reserved
TVOut TV Standard (see Table 8-4 for the list)

Table A-10 Scratch Registers (Continued)

Scratch Register Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-39

ROM Header
A.35 ROM Header
There is some information stored in the ROM header. This information is not intended for
application program development.

1CE/BB This register exists with VGA enable and in GX and CX controllers
only
bits [7:6]
bits [5:4]
bit 1

bit 0

=
=
=

=

640x480 refresh rate information
Monochrome mode, color information
If set, use VGAWONDER compatible paging

mechanism in packed pixel mode
If set, disable the programming of DAC to VGA mode

when INT 10h is called

Table A-11 ROM Header Information

Offset (byte) Content
-1, -2 Size of the structure in number of byte

0 = 0 Type definition
1 Extended function code (0a0h, 0a1h...etc.)
2 BIOS internal revision, major
3 BIOS internal revision, minor

4 - 5 I/O address, for sparse only
6 - 7 Reserved
8 - 9 Reserved

10 -11 Reserved
12 - 13 DRAM memory cycle in extended and VGA
14 - 15 VRAM memory cycle in extended and VGA
16 - 17 Pointer to frequency table
18 - 19 Pointer to log-on message
20 - 21 Pointer to miscellaneous information
22 - 23 PCI, Bus, Dev, Init code
24 - 25 Reserved
26 - 27 I/O base address if non-zero, block I/O enable
28 - 29 Reserved (used)
30 - 31 Reserved (used)
32 - 33 Reserved (used)

Table A-10 Scratch Registers (Continued)

Scratch Register Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-40 Proprietary and Confidential

ROM Header
The following code will locate the ROM header and extract the PCI bus device
information from the ROM header.

unsigned far *ip;
char far *cp;
FP_SEG(ip) = RomLocation(); /* assume RomLocation() will return the ROM segment */

/* address */
FP_OFF(ip) = 0x48; /* pointer to the ROM header */
FP_OFF(ip) = ip[0]; /* update array pointer to point to the ROM header */
FP_SEG(cp) = FP_SEG(ip); /* update byte pointer to point to the ROM header as well */
FP_OFF(cp) = FP_OFF(cp);
PciBusDev = ip[11]; /* get the pci bus dev word */

A.35.1 TVOut Information

This information exists only when ip[48 >> 1] 0xFFFF.

34 - 35 Int 10h offset, Coprocessor Only BIOS
36 - 37 Int 10h segment, Coprocessor Only BIOS
38 - 39 Monitor information, OEM specific
40 - 43 4K memory mapped location
44 - 47 Reserved (used)
48 - 49 TVOut (see below for details)
50 - 55 0ffffh, 0, 0ffffh
56 - 57 BIOS runtime address
58 - 59 Reserved (used)
60 - 61 Feature ID
62 - 63 Subsystem vendor ID
64 - 65 Subsystem ID
66 - 67 Device ID
68 - 69 Pointer to Config string

70 - 71 Pointer to Video Feature table (see also AL = 16h on page -17).
Exits only if “MMEDIA” exists; “MMEDIA” is located at offset - 8 bytes

72 - 73 Pointer to Hardware Info table (see below for details)

74 - 89 $??? Signatures indicating pointers to hardware information table, and
Multi-TV Standard table (optional)

Table A-11 ROM Header Information (Continued)

Offset (byte) Content

≠

© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-41

ROM Header
A.35.2 Hardware Information Table

This table exists when the Hardware Information table signature, “$ATI”, exists in the
BIOS.

ip[72 >> 1] = pointer to Hardware Information table

Table A-12 TVOut Information

Bits Content

3 - 0

TV Standard
= 0000 NTSC
= 0001 PAL
= 0010 PAL-M
= 0011 PAL-60
= 0100 NTSC-J
= 0101 PAL-CN
= 1001 SCART-PAL

5 - 4

TV / CRT
= 00 Invalid
= 01 TV off / CRT on
= 10 TV on / CRT off
= 11 TV on / CRT on

7 - 6

TVOut Reference Frequency
= 00 29.498928713 MHz
= 01 28.636360000 MHz
= 10 14.318180000 MHz
= 11 27.000000000 MHz

Table A-13 Hardware Information

Offset
(byte) Content

0 - 3 Hardware Info table signature string, “$ATI”
4 Hardware Info table revision
5 Hardware Info table size (8 - 10 bytes, depending on table revision)
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-42 Proprietary and Confidential

ROM Header
6

I2C_Type (for AMC connector)
bits [3:0]

bits [7:4]

=

=

0 Normal GP_IO
1 TVOut GP_IO
2 Dedicated I2C Pin (RAGE PRO only)
3 Clock pin = GIO 13, Data pin = GIO 12 (LT PRO and

RAGE XC only)
4 Clock pin = GIO 10, Data pin = GIO 12 (LT PRO only)
15 No AMC
Reserved

7

TVOut Support
bits [3:0]

bits [6:4]

bit 7

=
=
=
=

=
=
=
=
=
=
=

1 TVOut 1 supported
2 TVOut 2 supported
3 Improved TVOut 2 supported
4 RAGE THEATER supported
These bits are defined for table revision 2 and up:
0 TVOut not installed
1 28.62636 MHz crystal
2 29.48989 MHz crystal
3 27.0 MHz crystal
4 14.31818 MHz crystal
0 Uses MPP1 data port or integrated TVOUT (default)
1 Uses MPP2 data port

8

Video Port Capture (Table Revision 1 and up)
bits [3:0]
bit 0
bit 1
bit 2
bit 3
bits [4:7]

=
=
=
=
=

0 No video port capture
1 AMC/DVS0 video port supported
1 Zoom video port supported
1 AMC/DVS1 video port supported
1 VIP 16 bit port supported
Reserved

9

Host Port Configuration (Table Revision 2 and up)
bits [3:0]

bits [4:7]

=
=
=
=
=
=
=

0 No host port
1 MPP host port
2 2-bit VIP host port
3 4-bit VIP host port
4 8-bit VIP host port
5-15 Reserved
Reserved

Table A-13 Hardware Information (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-43

ROM Header
A.35.3 Multiple TV Standard Feature

This table exists when the Multi-TV Standard Table signature, "$TVS" exists in the BIOS
header. The pointer to the table is located immediately following this signature, if it exists.
The format of the Multi-TV Standard table is described in detail in the ATI TV Standard
Boot-Up Detection Document.

A.35.4 BIOS Driver Information Table

This table is supported by the 3D RAGE LT PRO, RAGE Mobility, RAGE XL, and
RAGE XC BIOS's. It is used to inform the Windows device drivers of pertinent
hard-coded information in the BIOS for each of those products.

Table A-14 Driver Information Table

Offset
(byte) Content

0 - 3

Driver Information table signature string
'$LPT' 3D RAGE LT PRO table signature
'$RMT' RAGE Mobility table signature
'$XCT' RAGE XC table signature
'$XLT' RAGE XL table signature

4 Driver Information table revision
5 Driver Information table size

6 - 7 Pointer to internal CRT parameter table (see Table 8-4 for format)
8 - 9 Internal CRT parameter table data size

10 - 11

No Panel Support = 0
Panel Support = pointer to hard-coded Panel Info Table

If pointer to Panel EDID Override Table exists, then driver
should ignore this pointer.

12 - 13

RAGE XC
or no TVOut = 0

RAGE LT Pro
or Mobility = pointer to table of pointers to all of the TV standard

mode tables
RAGE XL = pointer to the single run-time TV standard mode table

14 - 15 REFERENCE_DIVIDER= reference divider for the DAC
16 - 17 MIN_FREQ = minimum pixel clock frequency supported
18 - 19 MIN_FREQ = maximum pixel clock frequency supported
20 - 21 MIN_FREQ = reference frequency
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-44 Proprietary and Confidential

ROM Header
A.35.5 Panel EDID Override Table

This table is supported by the RAGE XL BIOS. It is used in cases where the EDID data
returned from a Digital Flat Panel is known to be incorrect. The BIOS and drivers should
first read the Manufacturer Id and Product Id from the panel and then search this table to
determine if there is data that should be used in place of that read from the panel.

A pointer to this table is included in the Driver Information Table for the RAGE XL
BIOS.

Each panel EDID override entry in the table is formatted as follows. Refer to the VESA
EDID Specification for further details:

22 - 23 Pointer to Hardware Information Table
24 - 25 Pointer to Video Feature (Multimedia) Table (0 if table does not exist)
26 - 27 Pointer to Panel EDID Override Table (0 if table does not exist)

Table A-15 Panel EDID Override Table

Offset
(byte) Content

0-n Table of word (16 bit) pointers, each to a specific OEM panel EDID override entry
n+1, n+2 0x0000 indicates end of pointer list

Table A-16 Panel EDID Override Table Format

Offset
(byte) Content

0 - 1 EISA Manufacturer ID
2 - 3 Vendor Assigned Unique Product ID

4 - 21 18 byte Detail Timing Block of Highest resolution supported by both the panel
and controller hardware

22 Panel Config byte 0 (PCLK and Panel Type)
23 Panel Config Byte 2 (DE, SCK, Hsyn, Vsyn polarities)

24 - 25 Reserved (default 0)

Table A-14 Driver Information Table (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential A-45

ROM Header
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
A-46 Proprietary and Confidential

Appendix B
3D RAGE LT PRO and RAGE Mobility

Specific Functions

B.1 Introduction

This chapter describes the 3D RAGE LT PRO and 3D RAGE Mobility specific BIOS
extensions for all the products of the series.

B.2 Function Calls

Base ROM address is determined by the register SCRATCH_REG1 (base_address +
084h) and the ROM services are accessible by absolute calls at this address with the
following instructions.

CALL ROM_ADDR:64h
where ROM_ADDR = (SCRATCH_REG1 & 0x7F) * 0x80 + 0xC000

Another way to invoke the extended ROM service is by calling a INT 10h with
AH=0A0h.

B.3 Extended ROM Services
This chapter will discuss only the 3D RAGE LT PRO and 3D RAGE Mobility specific
implementation. Information generic to the RAGE PRO product family will be referenced
back to the corresponding documentation.

The Video States save and restore are supported through the standard RAGE PRO BIOS
extension AL=014h or through the VESA VBE 2.0 functions. No 3D RAGE LT PRO and
3D RAGE Mobility specific interface will be required.

The Video memory can be saved through the memory aperture. The memory aperture
location and size of the video memory is returned through the standard RAGE PRO BIOS
extension AL=006h. No 3D RAGE LT PRO and 3D RAGE Mobility specific interface will
be required.

The Power Management will be supported through the standard RAGE PRO BIOS
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-1

Function 80h - Return Panel Type and Controller Supported Information
extension AL=00Eh. No 3D RAGE LT PRO and 3D RAGE Mobility specific interface will
be required.

B.4 Function 80h - Return Panel Type and Controller Supported
Information

This function is intended for diagnostic support and may not have a real application
purpose. The tables included are OEM specific and the information returned depends on
the controller and panel used by the OEM.

The following tables are OEM specific and the information returned will depend on the
controller and a panel used by the OEM.

To Call: AL = 80h Return panel type and controller supported information

Returns: DX:DI = Pointer to a data structure that would identify the capabilities of the
controller and types of panel that can be supported in the BIOS
and their corresponding identification code (see Table B-1).

Table B-1 Header Information

Offset
(byte) Content

0 - 1 Data structure type, will be 0
2 - 9 ATI signature string

10 - 17 OEM signature string
18 - 19 bit 0

bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
bit 8
bit 9
bit 10
bit 11
bits 15 - 12

=
=
=
=
=
=
=
=
=
=
=
=
=

0 Reserved
0 Reserved
1 If inverse video is supported
1 If shading control is supported
1 If contrast control is supported
1 If brightness control is supported
1 If positioning is supported
1 If expansion is supported
1 If text cursor size control is supported
1 If text cursor blinking control is supported
1 If hardware ICON is supported
1 If color dithering is supported
Reserved
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-2 Proprietary and Confidential

Function 80h - Return Panel Type and Controller Supported Information
20 - 21 Offset into the panel information table with panel ID 0,
DX is the segment

22 - 23 Offset into the panel information table with panel ID 1,
DX is the segment

Table B-1 Header Information (Continued)

Offset
(byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-3

Function 80h - Return Panel Type and Controller Supported Information
24 - 25 Offset into the panel information table with panel ID 2,
DX is the segment

.

.

.

.

.

.
82 - 83 Offset into the panel information table with panel ID 31,

DX is the segment
84 - 95 Reserved

Table B-2 Panel Information

Offset (byte) Content
0 Panel identification (000h - 01Fh)

1 - 24 Panel identification string
25 - 26 Horizontal size in pixels
27 - 28 Vertical size in lines
20 - 30 Flat panel type

bit 0

bit 1

bits 7 - 2

bits 15 - 8

=
=
=
=
=
=
=
=
=
=

0 Monochrome
1 Color
0 Single panel construction
1 Dual (split) panel construction
0 STN (passive matrix)
1 TFT (active matrix)
2 Active addressed STN
3 EL
4 Plasma
Reserved

31 Red bits per primary
32 Green bits per primary
33 Blue bits per primary
34 Reserved bits per primary

35 - 38 Size in KB of off screen memory required for frame buffer
39 - 42 Pointer to reserved off screen memory for frame buffer
43 - 55 Reserved

56 Power sequence delay

Table B-1 Header Information (Continued)

Offset
(byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-4 Proprietary and Confidential

Function 80h - Return Panel Type and Controller Supported Information
57 - 60 bits 2 - 0 Panel format:
For split-panel color STN panels
=

=

=

000 PACK6 (12-bit interface, 6-bit to upper panel, 6-bit
to lower panel)

001 PACK8 (16-bit interface, 8-bit to upper panel, 8-bit
to lower panel)

010 PACK12 (24-bit interface, 12-bit to upper panel,
12-bit to lower panel)

For single-panel color STN panels
=
=

000 PACK12 (12-bit interface)
001 PACK16 (16-bit interface)

For TFT panels
=
=
=
=
=
=

000 8-color panel (111 RGB)
001 512-color panel (333 RGB)
010 4096-color panel (444 RGB)
100 18-bit/pixel panel (666 RGB, LT mode)
101 24-bit/pixel panel (888 RGB)
110 18-bit/pixel panel (666 RGB, FPDI-2 mode)

bit 3 = Reserved

bit 7 - 4 Panel type
=
=
=
=

0001 Split panel STN color
0011 Single panel STN color
0111 Color TFT (1 pixel per clock)
1111 Color TFT (2 pixels per clock)

bits 10 - 8 Gray scale level
=

=
=
=
=
=

000 Indicates no frame modulation should be done
(applies only to TFT panels)

001 2 levels of gray support (applies only to TFT
panels)

010 4 levels of gray support (applies only to TFT
panels)

011 8 levels of gray support (applies only to STN
panels)

100 16 levels of gray support (applies only to STN
panels)

110 64 levels of gray support (applies only to STN
panels)

Table B-2 Panel Information (Continued)

Offset (byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-5

Function 80h - Return Panel Type and Controller Supported Information
57 - 60 bits 12 - 11 External LVDS clock
=
=
=

00 Disabled
01 Output VCLK on LCDTMG(0) pin
10 Output VCLK/2 on LCDTMG(0) pin

bit 13 Cursor blink rate
=
=

0 Same as CRT
1 Blink every 32 frame

bits 15 - 14 Reserved
bit 16 Active frame pulse / VSYNC

=
=

0 Active high frame pulse / VSYNC
1 Active low frame pulse / VSYNC

bit 17 Active line pulse / HSYNC
=
=

0 Active high line pulse / HSYNC
1 Active low line pulse / HSYNC

bit 18 Active display enable / MOD
=
=

0 Active high display enable / MOD
1 Active low display enable / MOD

bit 19 Active shift clock / PCLK
=
=

0 Active high shift clock / PCLK
1 Active low shift clock / PCLK

bit 21 - 20 Dithering
=
=
=
=

00 Disable dithering
01 Dither to 4 bits
10 Dither to 5 bits
11 Dither to 6 bits

bit 22 Reserved
bit 23 Back light modulation clock selection

=
=

0 29 MHz
1 29 MHz divided by 3

bits 25 - 24 Back light brightness level (RAGE LT PRO)
=
=
=

00 Dimmest
11 Brightest
Reserved (RAGE Mobility)

bits 27 - 26 Contrast level (RAGE LT PRO)
=
=
=

00 Dimmest
11 Brightest
Reserved (RAGE Mobility)

Table B-2 Panel Information (Continued)

Offset (byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-6 Proprietary and Confidential

Function 80h - Return Panel Type and Controller Supported Information
57 - 60 bits 31 - 28 HSYNC delay for the LCD panel
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

0000 No delay
0001 Delay by 1 VCLK
0010 Delay by 2 VCLKs
0011 Delay by 3 VCLKs
0100 Delay by 4 VCLKs
0101 Delay by 5 VCLKs
0110 Delay by 6 VCLKs
0111 Delay by 7 VCLKs
1000 Delay by 8 VCLKs
1001 Delay by 9 VCLKs
1010 Delay by 10 VCLKs
1011 Delay by 11 VCLKs
1100 Delay by 12 VCLKs
1101 Delay by 13 VCLKs
1110 Delay by 14 VCLKs
1111 Delay by 15 VCLKs

61 bit 0 =
=

0 If non-LVDS interface is used
1 If LVDS interface is used

bits 3 - 1 = Reserved
bits 7 - 4 Default refresh rate

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

0000 50 Hz
0001 56 Hz
0010 60 Hz
0011 67 Hz
0100 70 Hz
0101 72 Hz
0110 75 Hz
0111 76 Hz
1000 85 Hz
1001 90 Hz
1010 100 Hz
1011 120 Hz
1100 140 Hz
1101 150 Hz
1110 160 Hz
1111 200 Hz

Table B-2 Panel Information (Continued)

Offset (byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-7

Function 80h - Return Panel Type and Controller Supported Information
62 - 63 Supported refresh rate
bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
bit 8
bit 9
bit 10
bit 11
bit 12
bit 13
bit 14
bit 15

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1 If 50 Hz is supported
1 If 56 Hz is supported
1 If 60 Hz is supported
1 If 67 Hz is supported
1 If 70 Hz is supported
1 If 72 Hz is supported
1 If 75 Hz is supported
1 If 76 Hz is supported
1 If 85 Hz is supported
1 If 90 Hz is supported
1 If 100 Hz is supported
1 If 120 Hz is supported
1 If 140 Hz is supported
1 If 150 Hz is supported
1 If 160 Hz is supported
1 If 200 Hz is supported

64 -97 Array of offsets into mode tables, DX is the segment,
and the end of the array will have an offset of 00000h

Table B-3 Mode Table Structure

Offset (byte) Content
0 - 1 Horizontal display resolution in pixels
2 - 3 Vertical display resolution in lines

4 bit 0
bit 1
bit 2
bits 7 - 3

=
=
=
=

1 If mode table is for VGA mode
1 If mode table is for coprocessor mode
1 If ImpacTV is supported
Reserved

5 - 6 Offset into parameter table for expansion
7 - 8 Offset into table of parameter tables for ImpacTV support

9 - 10 Pixel clock
11 - 12 Pixel clock adjustment
13 - 16 bits 10 - 0

bits 31 - 11
=
=

FP_POS
Reserved

17 -18 bits 8 - 0
bit 9
bits 15 - 10

=
=
=

CRTC_H_TOTAL
Reserved
OVR_WID_LEFT

Table B-2 Panel Information (Continued)

Offset (byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-8 Proprietary and Confidential

Function 80h - Return Panel Type and Controller Supported Information
19 - 20 bits 8 - 0
bit 9
bits 15 - 10

=
=
=

CRTC_H_DISP
Reserved
OVR_WID_RIGHT

21 - 22 bits 8-0
bits 11-9
bits 15-12

=
=
=

CRTC_H_SYNC_STRT
CRTC_H_SYNC_DLY
HSYNC_DELAY

23 bits 5 - 0
bits 7 - 6

=
=

CRTC_H_SYNC_WID
Reserved

24 - 25 bits 10 - 0
bits 15 -11

=
=

CRTC_V_TOTAL
OVR_WID_TOP (4:0)

26 - 27 bits 10 - 0
bits 15 -11

=
=

CRTC_V_DISP
OVR_WID_BOTTOM (4:0)

28 - 29 bits 10 - 0
bits 15 -11

=
=

CRTC_V_SYNC_STRT
CRTC_V_SYNC_WID

30 bits 3 - 0
bits 7 - 4

=
=

OVR_WID_TOP (8:5)
OVR_WID_BOTTOM (8:5)

Table B-4 Expansion Mode Table Structure

Offset (byte) Content
0 - 1 Pixel clock
2 - 3 Pixel clock adjustment
4 - 7 bits 10 - 0

bit 31 - 11
=
=

FP_POS
Reserved

8 - 9 bits 8 - 0
bit 9
bits 15 -10

=
=
=

CRTC_H_TOTAL
Reserved
OVR_WID_LEFT

10 - 11 bits 8 - 0
bit 9
bits 15 -10

=
=
=

 CRTC_H_DISP
Reserved
OVR_WID_RIGHT

12 - 13 bits 8 - 0
bits 11 - 9
bits 15 - 12

=
=
=

CRTC_H_SYNC_STRT
CRTC_H_SYNC_DLY
HSYNC_DELAY

14 bits 5 - 0
bits 7 - 6

=
=

CRTC_H_SYNC_WID
Reserved

15 - 16 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_TOTAL
OVR_WID_TOP (4:0)

17 - 18 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_DISP
OVR_WID_BOTTOM (4:0)

Table B-3 Mode Table Structure (Continued)

Offset (byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-9

Function 80h - Return Panel Type and Controller Supported Information
19 - 20 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_SYNC_STRT
CRTC_V_SYNC_WID

21 bits 3 - 0
bits 7 - 4

=
=

OVR_WID_TOP (8:5)
OVR_WID_BOTTOM (8:5)

22 - 23 HORZ_BLEND_RATIO
24 - 27 Vertical stretching for VGA mode

bits 9 - 0
bits 19 - 10
bits 29 - 20
bits 31 - 30

=

=
=
=

VERT_STRETCH_RATIO0
VERT_STRETCH_RATIO1
VERT_STRETCH_RATIO2
Reserved

28 - 29 Vertical stretching for coprocessor mode
bits 9 - 0
bits 15 - 10

=
=

VERT_STRETCH_RATIO0
Reserved

30 - 31 Extended vertical stretching for VGA mode
bits 9 - 0
bits 15 - 10

=
=

VERT_STRETCH_RATIO3
Reserved

Table B-5 Parameter Tables for ImpacTV Support

Offset (byte) Content
0 – 1 Offset into parameter table for ImpacTV NTSC
2 – 3 Offset into parameter table for ImpacTV PAL
4 – 5 Offset into parameter table for ImpacTV PAL-M
6 – 7 Offset into parameter table for ImpacTV PAL-CN
8 – 9 Offset into parameter table for ImpacTV PAL-N

Table B-4 Expansion Mode Table Structure (Continued)

Offset (byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-10 Proprietary and Confidential

Function 80h - Return Panel Type and Controller Supported Information
Table B-6 ImpacTV Mode Table Structure

Offset (byte) Content
0 - 1 Pixel clock
2 - 3 Pixel clock adjustment
4 - 7 bits 10 - 0

bits 31 - 11
=
=

FP_POS
Reserved

8 - 9 bits 8 - 0
bit 9
bits 15 - 10

=
=
=

CRTC_H_TOTAL
Reserved
OVR_WID_LEFT

10 - 11 bits 8 - 0
bit 9
bits 15 - 10

=
=
=

CRTC_H_DISP
Reserved
OVR_WID_RIGHT

12 - 13 bits 8 - 0
bits 11 - 9
bits 15 - 12

=
=
=

CRTC_H_SYNC_STRT
CRTC_H_SYNC_DLY
HSYNC_DELAY

14 bits 5 - 0
bits 7 - 6

=
=

CRTC_H_SYNC_WID
Reserved

15 - 16 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_TOTAL
OVR_WID_TOP (4:0)

17 - 18 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_DISP
OVR_WID_BOTTOM (4:0)

19 - 20 bits 10 - 0
bits 15 - 11

=
=

CRTC_V_SYNC_STRT
CRTC_V_SYNC_WID

21 bits 3 - 0
bits 7 - 4

=
=

OVR_WID_TOP (8:5)
OVR_WID_BOTTOM (8:5)

22 - 23 HORZ_BLEND_RATIO
24 - 27 Vertical stretching for VGA mode

bits 9 - 0
bits 19 -10
bits 29 - 20
bits 31 - 30

=
=
=
=

VERT_STRETCH_RATIO0
VERT_STRETCH_RATIO1
VERT_STRETCH_RATIO2
Reserved

28 - 29 Vertical stretching for coprocessor mode
bits 9 - 0
bits 11 - 10
bits 15 - 12

=
=
=

VERT_STRETCH_RATIO0
Reserved
TVO_H_TOT_PIX

30 - 31 Extended vertical stretching for VGA mode
bits 9 - 0
bits 15 - 10

=
=

VERT_STRETCH_RATIO3
Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-11

Function 81h - Return Panel Identity Information
B.5 Function 81h - Return Panel Identity Information

This function allows checking for current attached flat panel device identification.

B.6 Function 82h – VESA BIOS Extensions / Flat Panel Functions
This section describes the VESA BIOS Extension Subfunctions for Flat Panels (VBE/FP
Functions) as they pertain to the 3D RAGE LT PRO and 3D RAGE Mobility controllers.

Reserved values should always be set to the value zero (0).

Sub-function 01h – Return Flat Panel Information

To Call: AL = 81h Return Panel Identity Information

Returns: CL [4 - 0] = Panel identity (see Function 80h)
CL [7 - 5] = 000b Reserved
DX:DI = Pointer to the panel definition (see Function 80h)

To Call: AL = 82h VBE / FP Functions
BL = 01h Return flat panel information

Returns: DX:DI = Pointer to flat panel information structure (see Table B-7).

Comments: This sub-function returns information about the current attached flat panel
device.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-12 Proprietary and Confidential

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Table B-7 Flat Panel Information Structure

Offset (byte) Content
0 - 1 Horizontal size in pixels
2 - 3 Vertical size in lines
4 - 5 Flat panel type

bit 0

bit 1

bits 7 - 2

bits 15 - 8

=
=
=
=
=
=
=
=
=
=

0 Monochrome
1 Color
0 Single panel construction
1 Dual (split) panel construction
0 STN (passive matrix)
1 TFT (active matrix)
2 Active addressed STN
3 EL
4 Plasma
Reserved

6 Red bits per primary
7 Green bits per primary
8 Blue bits per primary
9 Reserved bits per primary

10 - 13 Size in KB of off screen memory required for frame buffer
14 - 17 Pointer to reserved off screen memory for frame buffer
18 - 31 Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-13

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Sub-function 02h – Return/Select Inverse Video

This sub-function provides for checking/setting the current state of screen inversion being
an ability to display black text/graphics on a white background.

To Call: AL = 82h VBE/FP function
BL = 02h Return/select inverse video
BH = 00h Return request

Returns: BL = Current polarity state
BL [0] = 1 Text modes inverted
BL [1] = 1 Graphics modes inverted
BL [7 - 2] = 000000b Reserved

BH = Available polarity settings
BH [0] = 1 Text inverse available
BH [1] = 1 Graphics inverse available
BH [2] = 1 Text and Graphics inverse must be the same
BH [7 - 3] = 00000b Reserved

Comments: Not supported in RAGE LT PRO and RAGE Mobility.
Available settings must be tested prior to using “set” command.

To Call: AL = 82h VBE/FP function
BL = 02h Return/select inverse video
BH = 01h Select request
CL = Active polarity to set

CL [0] = 1 Inverse text modes
CL [1] = 1 Inverse graphics modes
CL [7 - 2] = 000000b Reserved

Comments: Not supported in RAGE LT PRO and RAGE Mobility.
When bit 2 in “available settings” is set (BH [2] = 1), bits 0 and 1 must be set
accordingly. Otherwise the inverse will be turned “off”.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-14 Proprietary and Confidential

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Sub-function 03h – Return/Select Flat Panel Shading Options

This sub-function provides for an end user the ability to select from a range of OEM
supplied shading options.

Sub-function 04h – Return / Select Flat Panel Contrast

This sub-function allows for the selection of flat panel contrast levels when OEM has
provided a software interface for adjusting the voltage to the biasing circuitry on the panel.

This is not a frame rate control.

To Call: AL = 82h VBE/FP function
BL = 03h Return/select flat panel shading options
BH = 00h Get number of shading options request

Returns: CL = Number of shading options
CH = Current shading option

To Call: AL = 82h VBE/FP function
BL = 03h Return/select flat panel shading options
BH = 01h Select option request
CH = Shading option number to set

Comments: Valid shading option to set is 1 to the number of shading options returned by
the “Get number of shading options”.

To Call: AL = 82h VBE/FP function
BL = 04h Return / Select Flat Panel Contrast
BH = 00h Return Range Request

Returns: CH = Upper Limit
CL = Current flat panel contrast

Comments: If CH = CL = 0, then flat panel contrast control is not supported.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-15

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Sub-function 05h – Return / Select Flat Panel Brightness

This sub-function allows for the selection of flat panel brightness levels when OEM has
provided a software interface for adjusting the voltage to the blac klight.

To Call: AL = 82h VBE/FP function
BL = 04h Return / Select Flat Panel Contrast
BH = 01h Select Request
CL = Flat panel contrast to set

Comments: Valid flat panel contrast to set is 0 to the upper limit returned by the “Return
Range Request”

To Call: AL = 82h VBE/FP function
BL = 05h Return / Select Flat Panel Brightness
BH = 00h Return Range Request

Returns: CH = Upper Limit
CL = Current flat panel brightness

Comments: If CH = CL = 0, then flat panel brightness control is not supported.

To Call: AL = 82h VBE/FP function
BL = 05h Return / Select Flat Panel Brightness
BH = 01h Select Request
CL = Flat panel brightness to set

Comments: Valid flat panel brightness option to set is 0 to the upper limit returned by the
“Return Range Request”

To Call: AL = 82h VBE/FP function
BL = 05h Return / Select Flat Panel Brightness
BH = 02h Return backlight modulation clock

Returns: CL = 0 Backlight modulation clock is 29 MHz
= 1 Backlight modulation clock is 29 Mhz divided by 3
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-16 Proprietary and Confidential

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Sub-function 06h – Return / Select Vertical and Horizontal Positioning

The displayed portion of the mode is positioned by means of this sub-function which
represents a global hardware setting. However, its effectiveness may be mode dependent.

To Call: AL = 82h VBE/FP function
BL = 05h Return / Select Flat Panel Brightness
BH = 03h Select backlight modulation clock
CL = 0 Select 29 MHz for backlight modulation clock

= 1 Select 29 MHz divided by 3 for backlight modulation clock

To Call: AL = 82h VBE/FP function
BL = 06h Return / Select Vertical and Horizontal Positioning
BH = 00h Return Range Request

Returns: BL = Available horizontal position settings
BL [0] = 1 Left
BL [1] = 1 Center
BL [2] = 1 Right
BL [7 - 3] = 00000b Reserved

BH = Available vertical position settings
BH [0] = 1 Top
BH [1] = 1 Center
BH [2] = 1 Bottom
BH [7 - 3] = 00000b Reserved

CL = Current horizontal position
= 0 Left
= 1 Center
= 2 Right
All other values are reserved.

CH = Current vertical position
= 0 Top
= 1 Center
= 2 Bottom
All other values are reserved.

Comments: Not supported in RAGE LT PRO and RAGE Mobility.
The returned are hardware values being set, not the mode dependent
information.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-17

Function 82h – VESA BIOS Extensions / Flat Panel Functions
Sub-function 07h – Return/Select Vertical and Horizontal Expansion

This sub-function allows for the displayed portion of a mode to be expanded.

To Call: AL = 82h VBE/FP function
BL = 06h Return / Select Vertical and Horizontal Positioning
BH = 01h Select Request
CL = Horizontal position to set

= 0 Left
= 1 Center
= 2 Right

 All other values are reserved.
CH = Vertical position to set

= 0 Top
= 1 Center
= 2 Bottom

 All other values are reserved.

Comments: Not supported in RAGE LT PRO and RAGE Mobility.

To Call: AL = 82h VBE/FP function
BL = 07h Return / Select Vertical and Horizontal Expansion
BH = 00h Return Request

Returns: BL = Available horizontal expansion settings
BL [0] = 0 Text expansion not available

= 1 Text expansion available
BL [1] = 0 Graphics expansion not available

= 1 Graphics expansion available
BL [2] = 1 Horizontal and vertical expansion

 must be enabled / disabled
 simultaneously

BL [7 - 3] = 00000b Reserved
BH = Available vertical expansion settings

BH [0] = 0 Text expansion not available
= 1 Text expansion available

BH [1] = 0 Graphics expansion not available
= 1 Graphics expansion available

BH [2] = 1 Horizontal and vertical expansion
 must be enabled/disabled
 simultaneously

BH [7 - 3] = 000000b Reserved
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-18 Proprietary and Confidential

Function 82h – VESA BIOS Extensions / Flat Panel Functions
CL = Current horizontal expansion
CL [0] = 0 Text expansion disabled

= 1 Text expansion enabled
CL [1] = 0 Graphics expansion disabled

= 1 Graphics expansion enabled
CL [7 - 2] = 000000b Reserved

CH = Current vertical expansion
CH [0] = 0 Text expansion disabled

= 1 Text expansion enabled
CH [1] = 0 Graphics expansion disabled

= 1 Graphics expansion enabled
CH [7 - 2] = 000000b Reserved

(continued on the next page)
DL = Current hardware expansion state

DL [0] = 0 Horizontal text expansion off
= 1 Horizontal text expansion on

DL [1] = 0 Horizontal graphics expansion off
= 1 Horizontal graphics expansion on

DL [2] = 0 Vertical text expansion off
= 1 Vertical text expansion on

DL [3] = 0 Vertical graphics expansion off
= 1 Vertical graphics expansion on

DL [7 - 4] = 0000b Reserved

Comments: The returned are hardware values being set, not the mode dependent
information.

To Call: AL = 82h VBE/FP function
BL = 07h Return / Select Vertical and Horizontal Expansion
BH = 01h Select Request
CL = Horizontal expansion

CL [0] = 0 Disable text expansion
= 1 Enable text expansion

CL [1] = 0 Disable graphics expansion
= 1 Enable graphics expansion

CL [7 - 2] = 000000b Reserved
CH = Vertical expansion

CH [0] = 0 Disable text expansion
= 1 Enable text expansion

CH [1] = 0 Disable graphics expansion
= 1 Enable graphics expansion

CH [7 - 2] = 000000b Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-19

Function 83h – LCD / Monitor / TV Detection
B.7 Function 83h – LCD / Monitor / TV Detection

This function allows the detection of what display is attached to the computer and what its
current status is.

To Call: AL = 83h LCD / monitor / TV detection
CH [0] =

=
0
1

Return monitor information based on previous detection
Return current monitor information by detection

CH [1] =
=

0
1

Return TV information based on previous detection
Return current TV information by detection

CH [2] =
=

0
1

Return LCD information based on previous detection
Return current LCD information by detection

CH [5 - 3] = 000b Reserved

CH [6] = 1 Force CRT attacht

CH [7] = 1 Force TV attach

Returns: CL [1 - 0] = Monitor
=
=
=

0
1
2

No monitor
Monochrome monitor
Color monitor

CL [3 - 2] = LCD
=
=

0
1

No LCD attached
LCD attached

CL [5 - 4] = TV
=
=
=
=

0
1
2
3

No TV attached
TV attached to composite connector
TV attached to S-Video connector
TV attached to both composite and S-Video connectors

All other values are reserved.

CL [6] = 1 TV force detection state

CL [7] = 1 CRT force detection state
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-20 Proprietary and Confidential

Function 84h – Return / Select Active Display
B.8 Function 84h – Return / Select Active Display

This function allows application software to determine information about currently
attached active display and set the necessary among the available active display modes.

To Call: AL = 84h Return / Select Active Display
BH = 00h Return request

Returns: BL = Current display
BL [0] = 1 Flat panel
BL [1] = 1 CRT
BL [2] = 1 TV
BL [7 - 3] = 00000b Reserved

CL = Requested display
CL [0] = 1 Flat panel
CL [1] = 1 CRT
CL [2] = 1 TV
CL [3] = 1 Auto-switch
CL [7 - 4] = 0000b Reserved

BH = Available display
BH [0] = 1 Flat panel
BH [1] = 1 CRT
BH [2] = 1 TV
BH [7 - 3] = 00000b Reserved

To Call: AL = 84h Return / Select Active Display
BH = 01h Select request
CL = Requested display

CL [0] = 1 Flat panel
CL [1] = 1 CRT
CL [2] = 1 TV
CL [3] = 1 Auto-switch
CL [7 - 4] = 0000b Reserved

Returns: BL = Current display
BL [0] = 1 Flat panel
BL [1] = 1 CRT
BL [2] = 1 TV
BL [7 - 3] = 00000b Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-21

Function 85h – Return / Select Power Management Mode
B.9 Function 85h – Return / Select Power Management Mode
This function allows the ability to check / set between different power management and
counter values for timer mode.

Comments: The "Return Request" Sub-function should be called in order to determine the
available displays before calling the "Select Request" to select the active
displays.

To Call: AL = 85h Return / Select power management mode
BH = 00h Return request

Returns: CL = Power management mode
CL [0] = 0 Power management disabled

= 1 Power management enabled
CL [2 - 1] = 0 Pin mode

= 1 Register mode
= 2 Timer mode
= 3 PCI configuration space register mode

CL [7 - 3] = 00000b Reserved

CH = Counter value for timer mode
CH [3 - 0] = Standby counter value in minutes
CH [7 - 4] = Suspend counter value in minutes

To Call: AL = 85h Return / Select power management mode
BH = 01h Enable / Disable power management request
CL = Power management mode

CL [0] = 0 Disable power management
= 1 Enable power management

CL [7 - 1] = 0000000bReserved

To Call: AL = 85h Return / Select power management mode
BH = 02h Set counter value request (for timer mode only)
CL = Counter value for timer mode

CL [3 - 0] = Standby counter value in minutes
CL [7 - 4] = Suspend counter value in minutes

To Call: AL = 85h Return / Select power management mode
BH = 03h Switch power management mode
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-22 Proprietary and Confidential

Function 86h – In and Out Of Suspend State (not supported in LT PRO and Mobility)
B.10 Function 86h – In and Out Of Suspend State
(not supported in LT PRO and Mobility)

When this function is called, interrupt should be disabled. The graphics subsystem is
ready to put into suspend mode or ready to get out of suspend mode. It is assumed that no
other graphics operation will be initiated after this call and suspend procedure or resume
procedure should start immediately.

B.11 Function 87h – Return / Select Refresh Rate

This function provides for the ability to check the current refresh rate and set the necessary
from the range of supported refresh rates.

CL =
=

0
1

Switch power management to non-ACPI mode
Switch power management to ACPI mode

To Call: AL = 086h In and Out Of Suspend State
CL [3 - 0] = 1 Suspend start, call before the hardware pin

is put to suspend, ready to suspend when
exit

= 2 Suspend complete, call after the hardware
pin is put to suspend

= 3 Ready to get out of suspend, call before
the hardware pin is put to normal

= 4 Out of suspend is complete, call after the
hardware pin is put to normal

All other values are reserved.

CH [7 - 4] = 0000b Reserved

Comments: Not supported in RAGE LT PRO and RAGE Mobility

To Call: AL = 87h Return / Select refresh rate
BH = 00h Return request

Returns: CX = Supported refresh rate
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-23

Function 87h – Return / Select Refresh Rate
CX [0] = 1 If 50 Hz is supported
CX [1] = 1 If 56 Hz is supported
CX [2] = 1 If 60 Hz is supported
CX [3] = 1 If 67 Hz is supported
CX [4] = 1 If 70 Hz is supported
CX [5] = 1 If 72 Hz is supported
CX [6] = 1 If 75 Hz is supported
CX [7] = 1 If 76 Hz is supported
CX [8] = 1 If 85 Hz is supported
CX [9] = 1 If 90 Hz is supported
CX [10] = 1 If 100 Hz is supported
CX [11] = 1 If 120 Hz is supported
CX [12] = 1 If 140 Hz is supported
CX [13] = 1 If 150 Hz is supported
CX [14] = 1 If 160 Hz is supported
CX [15] = 1 If 200 Hz is supported

DX = Selected refresh rate
DX [0] = 1 If 50 Hz is selected
DX [1] = 1 If 56 Hz is selected
DX [2] = 1 If 60 Hz is selected
DX [3] = 1 If 67 Hz is selected
DX [4] = 1 If 70 Hz is selected
DX [5] = 1 If 72 Hz is selected
DX [6] = 1 If 75 Hz is selected
DX [7] = 1 If 76 Hz is selected
DX [8] = 1 If 85 Hz is selected
DX [9] = 1 If 90 Hz is selected
DX [10] = 1 If 100 Hz is selected
DX [11] = 1 If 120 Hz is selected
DX [12] = 1 If 140 Hz is selected
DX [13] = 1 If 150 Hz is selected
DX [14] = 1 If 160 Hz is selected
DX [15] = 1 If 200 Hz is selected
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-24 Proprietary and Confidential

Function 88h – Return / Select Dithering
B.12 Function 88h – Return / Select Dithering

This function allows the ability to check / set additional colors and shades from existing
palette.

To Call: AL = 87h Return / Select refresh rate
BH = 01h Select request

CX [0] = 1 To select 50 Hz
CX [1] = 1 To select 56 Hz
CX [2] = 1 To select 60 Hz
CX [3] = 1 To select 67 Hz
CX [4] = 1 To select 70 Hz
CX [5] = 1 To select 72 Hz
CX [6] = 1 To select 75 Hz
CX [7] = 1 To select 76 Hz
CX [8] = 1 To select 85 Hz
CX [9] = 1 To select 90 Hz
CX [10] = 1 To select 100 Hz
CX [11] = 1 To select 120 Hz
CX [12] = 1 To select 140 Hz
CX [13] = 1 To select 150 Hz
CX [14] = 1 To select 160 Hz
CX [15] = 1 To select 200 Hz

To Call: AL = 88h Return / Select dithering level
BH = 00h Return Range Request

Returns: CH = Upper limit
CL = Current dithering

To Call: AL = 88h Return / Select dithering level
BH = 01h Select request
CL = Dithering to set

Comments: Valid dithering level to set is 0 to the upper limit returned by the “Return
Range Request”
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-25

Function 89h – Return / Select Cursor Blink Rate
B.13 Function 89h – Return / Select Cursor Blink Rate

This function serves the purpose of checking / setting the rate of on-and-off cursor
illumination on a display screen.

B.14 Function 8Ah – Hardware ICON Support

This function allows the ability to check for hardware ICON memory address, set / reset
hardware ICON memory mode, disable hardware ICON and provide custom hardware
ICON support.

To Call: AL = 89h Return / Select cursor blink rate
BH = 00h Return Range Request

Returns: CH = Upper limit
CL = Current cursor blink rate

To Call: AL = 89h Return / Select cursor blink rate
BH = 01h Select request
CL = Current cursor blink rate to set

Comments: Valid cursor blink rate to set is 0 to the upper limit returned by the “Return
Range Request”

To Call: AL = 8Ah Return / Select hardware ICON
BH = 00h Return hardware ICON memory address using VGA

aperture
BL = 00h Return hardware ICON memory address for the primary

CRTC using VGA aperture. (Required for RAGE Mobility
only)

= 80h Return hardware ICON memory address for the
secondary CRTC using VGA aperture. (Required for
RAGE Mobility only)

Returns: CX:DX = Hardware ICON memory address using VGA aperture.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-26 Proprietary and Confidential

Function 8Ah – Hardware ICON Support
To Call: AL = 8Ah Return / Select hardware ICON
BH = 01h Set hardware ICON memory mode using VGA aperture
CX:DX = Pointer to a 32 byte zero-filled buffer for preserving registers by the

Video BIOS

To Call: AL = 8Ah Return / Select hardware ICON
BH = 02h Reset hardware ICON memory mode using VGA aperture
CX:DX = Pointer to a 32 byte buffer for restoring registers by the Video BIOS

To Call: AL = 8Ah Return / Select hardware ICON
BH = 80h Return hardware ICON memory address using linear

aperture
BL = 00h Return hardware ICON memory address for the primary

CRTC using linear aperture (Required for RAGE Mobility
only)

= 80h Return hardware ICON memory address for the
secondary CRTC using linear aperture (Required for
RAGE Mobility only)

Returns: CX = Hardware ICON memory address (bits 31 - 16) using linear
aperture

DX = Hardware ICON memory address (bits 15 - 0) using linear aperture

To Call: AL = 8Ah Return / Select hardware ICON
BH = 81h Set hardware ICON memory mode using linear aperture
CX:DX = Pointer to a 32 byte zero-filled buffer for preserving registers by the

Video BIOS

To Call: AL = 8Ah Return / Select hardware ICON
BH = 82h Reset hardware ICON memory mode using linear

aperture
CX:DX = Pointer to a 32 byte buffer for restoring registers by the Video BIOS
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-27

Function 8Ah – Hardware ICON Support
To Call: AL = 8Ah Return / Select hardware ICON
BH = 03h Enable hardware ICON
BL = 00h Enable hardware ICON for the primary CRTC (Required

for Rage Mobility only)
= 80h Enable hardware ICON for the secondary CRTC.

(Required for Rage Mobility only)
CX:DX = Pointer to a 32 byte buffer for hardware ICON information

Table B-8 Hardware ICON Enable Information

Offset (byte) Content
0 Hardware ICON size

bit 0

bits 6 - 1
bit 7

=
=
=
=

0 64x64
1 128x128
Reserved
1 Display Hardware ICON and blank rest of screen

1 Hardware ICON position
bits 2 - 0

bits 7 - 3

=
=
=
=
=
=
=

000b Upper left corner
001b Bottom left corner
010b Upper right corner
011b Bottom right corner
100b Center
111b Position specified for the upper left corner
Reserved

2 bits 7 - 0 = color 0 Blue
3 bits 7 - 0 = color 0 Green
4 bits 7 - 0 = color 0 Red
5 bits 7 - 0 = color 1 Blue
6 bits 7 - 0 = color 1 Green
7 bits 7 - 0 = color 1 Red

8 - 9 X-coordinate if bits 2 - 0 of byte 1 is 111b
10 - 11 Y-coordinate if bits 2 - 0 of byte 1 is 111b
12 - 31 Reserved
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-28 Proprietary and Confidential

Function 8Ah – Hardware ICON Support
To Call: AL = 8Ah Return / Select hardware ICON
BH = 04h Disable hardware ICON
BL = 00h Disable hardware ICON for the primary CRTC (Required

for RAGE Mobility only)
= 80h Disable hardware ICON for the secondary CRTC

(Required for RAGE Mobility only)
CX:DX = Pointer to a 32 byte buffer for hardware ICON information

To Call: AL = 8Ah Return / Select hardware ICON
BH = 05h Set hardware ICON positiont
BL[0] = 0 Hardware ICON is 64x64

= 1 Hardware ICON is 128x128
BL[7] = 0 Set hardware ICON position for the primary CRTC

(Required for Rage Mobility only)
= 1 Set hardware ICON position for the secondary CRTC

(Required for Rage Mobility only)
CX = X-coordinate of upper left corner
DX = Y-coordinate of upper left corner

To Call: AL = 8Ah Return / Select hardware ICON
BH = 06h Custom hardware ICON support

To Call: AL = 8Ah Return / Select hardware ICON
BH = 07h Disable hardware ICON without restoring registers
BL = 00h Disable hardware ICON for the primary CRTC without

restoring registers (Required for Rage Mobility only).
= 80h Disable hardware ICON for the secondary CRTC without

restoring registers (Required for Rage Mobility only).

To Call: AL = 8Ah Return / Select hardware ICON
BH = 08h Return hardware ICON state

Returns: BL[0] = 0 If hardware ICON is disabled for the primary CRTC
= 1 If hardware ICON is enabled for the primary CRTC

BL[1] = 0 If hardware ICON is disabled for the secondary CRTC
(Supported in RAGE Mobility only)

= 1 If hardware ICON is enabled for the secondary CRTC
(Supported in RAGE Mobility only)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-29

Function 8Bh – Set CMOS Information
B.15 Function 8Bh – Set CMOS Information
This function offers the ability to update information in the CMOS by video BIOS or
system software.

BL[2] = 0 If hardware cursor is disabled for the primary CRTC
= 1 If hardware cursor is enabled for the primary CRTC

BL[3] = 0 If hardware cursor is disabled for the secondary CRTC
= 1 If hardware cursor is enabled for the secondary CRTC

To Call: AL = 8Ah Return / Select hardware ICON
BH = 09h Return current resolution for hardware ICON
BL = 00h For primary CRTC

= 80h For secondary CRTC

Returns: CX = Current horizontal resolution for hardware ICON
DX = Current vertical resolution for hardware ICON

To Call: AL = 8Ah
BH = 0Ah Disable hardware cursor
CL[0] = 1 Disable hardware cursor for the primary CRTC
CL[1] = 1 Disable hardware cursor for the secondary CRTC

To Call: AL = 8Ah
BH = 00Bh Enable hardware cursor
CL[0] = 1 Enable hardware cursor for the primary CRTC
CL[1] = 1 Enable hardware cursor for the secondary CRTC

To Call: AL = 8Bh Set CMOS Information
BH = 80h Set Request Display(s) in CMOS
CL = Current active display(s) on primary CRTC
CL[0] = 1 LCD
 [1] = 1 CRT
 [2] = 1 TV
 [3] = 1 DFP
 [7-4] = 0000b reserved
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-30 Proprietary and Confidential

Function 8Ch – Return / Select 475 Lines VGA Mode
B.16 Function 8Ch – Return / Select 475 Lines VGA Mode
This function provides the ability to check / set a specific VGA mode allowing 475 lines
screen size.

CH = Current detected display(s) based on last detection
CH[0] = 1 LCD
 [1] = 1 CRT
 [2] = 1 TV
 [3] = 1 DFP
 [7-4] = 0000b reserved

Comments: This sub-function is intended to be used by video BIOS or system software
only.

To Call: AL = 8Bh Set CMOS Information
BH = 81h Set Request Expansion in CMOS
CL = 0 Disable expansion

= 1 Enable expansion

Comments: This sub-function is intended to be used by video BIOS or system software
only.

To Call: AL = 8Bh Set CMOS Information
BH = 82h Set Select TV Standard in CMOS
CX = TV standard

= 0 NTSC
 = 1 PAL
 = 2 PAL-M
 = 3 PAL-60
 = 4 NTSC-J

= 5 PAL-CN
= 6 PAL-N

 = 9 SCART-RGB

Comments: This sub-function is intended to be used by video BIOS or system software
only.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-31

Function 8Dh – Return Current Display Information
B.17 Function 8Dh – Return Current Display Information
This function provides for the ability to check the current display information.

To Call: AL = 8Ch Return / Select 475 lines VGA mode
BH = 00h Return request

Returns: CL = 0 475 lines VGA mode disabled
= 1 475 lines VGA mode disabled

Comments: Not supported in LT PRO and RAGE Mobility

To Call: AL = 8Ch Return / Select 475 lines VGA mode
BH = 01h Select request
CL = 0 Disable 475 lines VGA mode

= 1 Enable 475 lines VGA mode

Comments: Not supported in LT PRO and RAGE Mobility

To Call: AL = 8Dh Return current display information
BH = 00h Return current display is text or graphics for the primary

CRTC

Returns: CX =
=

0
1

Current display is text mode
Current display is graphics mode

To Call: AL = 8Dh Return current display information
BH = 01h Return current display resolution
BL = 00h For primary CRTC

= 80h For secondary CRTC

Returns: BX = Horizontal resolution in pixels
DX = Vertical resolution in lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-32 Proprietary and Confidential

Function 8Eh - LCD Display Data Channel Support (DDC)
B.18 Function 8Eh - LCD Display Data Channel Support (DDC)

Sub-function 0 returns the LCD DDC support information of the BIOS and LCD.

Sub-function 1 returns the 128 byte EDID information.

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 00h LCD DDC format supported by the BIOS and LCD

Returns: BX = 0 LCD DDC not supported
BX[1] = 1 DDC2B supported by LCD (I2C address 0A0h)
BX[3] = 1 DDC2B supported by LCD (I2C address 0A2h)
BX[4] = 1 DDC2B supported by LCD (I2C address 0A6h)

AX[1] = 1 DDC2B supported by BIOS (I2C address 0A0h)
AX[2] = 1 DDC2AB supported by BIOS
AX[3] = 1 DDC2B supported by BIOS (I2C address 0A2h and 0A6h)
AX[6] = 1 BIOS support detailed EDID timing at power up
AX[7] = 1 BIOS can use EDID information to setup the board at

power up

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 01h Return first block of EDID 1.x data
CX = Buffer size
DX:DI = Pointer to buffer

Comments: The BIOS does not check the validity of the EDID information captured from
the LCD. It is the caller who must verify the EDID information before using it.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-33

Function 8Fh – Get / Set Video BIOS Information
Sub-function 4 returns the LCD DDC support information of the BIOS.

Sub-function 5 returns the 256 byte EDID information.

B.19 Function 8Fh – Get / Set Video BIOS Information

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 04h Return LCD DDC format supported by the BIOS

Returns: BX = 0 DDC2B used for communication
AX[1] = 1 DDC2B supported by BIOS (I2C address 0A0h)
AX[2] = 1 DDC2AB supported by BIOS
AX[3] = 1 DDC2B supported by BIOS (I2C address 0A2h and 0A6h)
AX[6] = 1 BIOS support detailed EDID timing at power up
AX[7] = 1 BIOS can use EDID information to setup the board at

power up

Comments: Similar to Sub-function 0 except for no LCD DDC detection performing.

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 05h Return first block of EDID 2.x data
CX = Buffer size
DX:DI = Pointer to buffer

Comments: The BIOS does not check the validity of the EDID information captured from
the LCD. It is the caller who must verify the EDID information before using it.

To Call: AL = 8Fh Get / Set Video BIOS Information
BH = 00h Get miscellaneous video BIOS information

Returns: CL = Miscellaneous video BIOS information
CL[2-0] = 000b reserved
 [3] = 1 If display(s) switching by video BIOS is disabled
 [5-4] = 11b If large desktop mode

= 10b If independent display timing (IDT) mode
= 00b If single CRTC mode
= 01b invalid
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-34 Proprietary and Confidential

Function 04Exxh – System BIOS Int 15h
B.20 Function 04Exxh – System BIOS Int 15h
This function is to be provided by the OEM to supply hardware-specific information to the
Video BIOS. The sub-functions are called by the Video BIOS during the initialization, if
the latter is required to find out the specified information.

The system BIOS Int 15h callback function should validate the return data before
returning to Video BIOS.

If the function call is not supported or fails, default values will be used. The default values
depend on specific OEM's requirement.

Sub-function 00h – Return Panel Identity

 [7-6] = 00b reserved

To Call: AL = 8Fh Get / Set Video BIOS Information
BH = 02h Set display(s) switching by video BIOS state
CL = 0 Enable display(s) switching by video BIOS

= 1 Disable display(s) switching by video BIOS

To Call: AL = 8Fh Get / Set Video BIOS Information
BH = 05h Set LID state
CL = 0 LID is open
 = 1 LID is closed

To Call: AX = 4Exxh System BIOS Int 15h
BL = 00h Return panel identity

Returns: BL = Panel ID (000h - 01Fh)

Comments: If the function call is not supported or fails, default value will be used.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-35

Function 04Exxh – System BIOS Int 15h
Sub-function 01h – Return Select Display

Sub-function 02h – Return Selected Expansion

To Call: AX = 4Exxh System BIOS Int 15h
BL = 01h Return selected display

Returns: BL [0] = 1 Flat panel
BL [1] = 1 CRT
BL [2] = 1 TV
BL [3] = 1 Auto-switch
BL [5 - 4] = 00b Reserved
BL [6] = 1 Force CRT connection
BL [7] = 1 Force TV connection

Comments: If the function call is not supported or fails, default value will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 02h Return Selected Expansion

Returns: BL [0] = 1 Enable text expansion
BL [1] = 1 Enable graphics expansion
BL [7 - 2] = 000000b Reserved

Comments: If the function call is not supported or fails, default value will be used.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-36 Proprietary and Confidential

Function 04Exxh – System BIOS Int 15h
Sub-function 03h – Return Selected Refresh Rate

Sub-function 04h – Return Standby and Suspend Counter Values for
Power Management (Timer Mode only)

To Call: AX = 4Exxh System BIOS Int 15h
BL = 03h Return Selected Refresh Rate

Returns: BX [0] = 1 To select 50 Hz
BX [1] = 1 To select 56 Hz
BX [2] = 1 To select 60 Hz
BX [3] = 1 To select 67 Hz
BX [4] = 1 To select 70 Hz
BX [5] = 1 To select 72 Hz
BX [6] = 1 To select 75 Hz
BX [7] = 1 To select 76 Hz
BX [8] = 1 To select 85 Hz
BX [9] = 1 To select 90 Hz
BX [10] = 1 To select 100 Hz
BX [11] = 1 To select 120 Hz
BX [12] = 1 To select 140 Hz
BX [13] = 1 To select 150 Hz
BX [14] = 1 To select 160 Hz
BX [15] = 1 To select 200 Hz

Comments: If the function call is not supported or fails, default value will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 04h Return standby and suspend counter values for power

management (timer mode only)

Returns: BL [3 - 0] = Standby counter values in minutes
BL [7 - 4] = Suspend counter values in minutes

Comments: If the function call is not supported or fails, default values will be used.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-37

Function 04Exxh – System BIOS Int 15h
Sub-function 05h – Return TV Standard

Sub-function 06h – Return Power Management Mode

The format of every function return status word is as follows:

A non-zero value in the AH register should be treated as a general failure condition.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 05h Return TV standard

Returns: BL =
=
=
=
=
=

0
1
2
4
5
6

NTSC
PAL
PAL-M
NTSC-J
PAL-CN
PAL-N

Comments: If the function call is not supported or fails, default values will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 06h Return Power Management Mode

Returns: BL =
=

0
1

Non-ACPI mode
ACPI mode

Comments: If the function call is not supported or fails, default values will be used.

AH = 4Eh Function is supported
!= 4Eh Function is not supported

AL = 00h Function call successful
= 01h Function call failed
= 02h Function call not supported in current hardware

configuration
= 03h Function call invalid in current video mode
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-38 Proprietary and Confidential

Function 04Exxh – System BIOS Int 15h
Sub-function 07h – Get SGRAM / SDRAM Information

Sub-function 08h – Set Request Display(s) in CMOS

Sub-function 09h – Set Request Expansion in CMOS

To Call: AX = 4Exxh System BIOS Int 15h
BL = 07h Get SGRAM / SDRAM information

Returns: BL =
=

0
1

SGRAM
SDRAM

To Call: AX = 4Exxh System BIOS Int 15h
BL = 08h Set request display(s) in CMOS
CL = Current active display(s) on primary CRTC
 CL[0] = 1 LCD
 [1] = 1 CRT
 [2] = 1 TV
 [7-3] = 00000b reserved
 CH = Current detected display(s) based on last detection
 CH[0] = 1 LCD
 [1] = 1 CRT
 [2] = 1 TV
 [7-3] = 00000b reserved

To Call: AX = 4Exxh System BIOS Int 15h
BL = 09h Set request expansion in CMOS
CL = 0 Disable expansion
 = 1 Enable expansion
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential B-39

Function 04Exxh – System BIOS Int 15h
Sub-function 0Ah – Set Select TV Standard in CMOS

To Call: AX = 4Exxh System BIOS Int 15h
BL = 0Ah Set Select TV Standard in CMOS
CX = TV Standard

= 0 NTSC
= 1 PAL
= 2 PAL-M
= 3 PAL-60
= 4 NTSC-J
= 5 PAL-CN
= 6 PAL-N
= 9 SCART-RGB
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
B-40 Proprietary and Confidential

Appendix C
RAGE XL Specific Functions

C.1 Introduction

This chapter discusses RAGE XL specific implementations only.

The Video States Save and Restore are supported through the standard RAGE PRO BIOS
extension AL=014h or through the VESA VBE 2.0 functions. No RAGE XL specific
interface will be required.

The Video memory can be saved through the memory aperture. The memory aperture
location and size of the video memory is returned through the standard RAGE PRO BIOS
extension AL=006h. No RAGE XL specific interface will be required.

The Power Management will be supported through the standard RAGE PRO BIOS
extension AL=00Eh. No RAGE XL specific interface will be required.

For information generic to 3D RAGE PRO product family see Chapter 2.

C.2 Function Calls
Base ROM address is determined by the register SCRATCH_REG1(base_address + 084h)
and the ROM services are accessible by absolute calls at this address with the following
instructions.

CALL ROM_ADDR:64h,

where ROM_ADDR = (SCRATCH_REG1 & 0x7F)×0x80 + 0xC000

Another way to invoke the extended ROM service is by calling a INT 10h with
AH=0A0h.

C.3 Function 80h - Return Panel Type and Controller Supported
Information (not supported in RAGE XL)

This function is not supported by RAGE XL because the function interface assumes panel
presence at boot time.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-1

Function 81h - Return Panel Identity Information (not supported in RAGE XL)
C.4 Function 81h - Return Panel Identity Information
(not supported in RAGE XL)

This function is not supported by RAGE XL because the function interface assumes panel
presence at boot time.

C.5 Function 82h – VESA BIOS Extensions / Flat Panel Functions
(not supported in RAGE XL)

These ATI extended functions have been replaced in Rage XL with the proposed VESA
VBE / Flat Panel Function Extensions as described in the following section.

C.6 Function 4F11h – VESA VBE / Flat Panel BIOS

This section describes the VESA BIOS Extension sub-functions for flat panels (VBE/FP
Functions) as they pertain to the RAGE XL controller.

Reserved values should always be set to the value zero (0).

Sub-function 00h - Return Flat Panel Extensions Support Information

To Call: AX = 4F11h VBE/FP function
BL = 00h Return flat panel extensions support information

ES:DI = Pointer to 256 byte buffer in which to place SubVBEInfo
block (see).

Returns: AX = VBE return status
Comments: This sub-function allows application developers to get information about the

flat panel extensions. The function is required by VBE 2.0 as a Supplemental
Specification. Due to code space limitations, this function may not be
implemented in current BIOS.

Table C-1 SubVBEInfoBlock Structure

Offset (byte) Content
0 - 6 ‘VBE/FP’, 0FFh Supplement VBE signature
7 - 8 0100h Supplement VBE version

9 03 Bit-field of supported sub-functions
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-2 Proprietary and Confidential

Function 4F11h – VESA VBE / Flat Panel BIOS
Sub-function 01h - Return Flat Panel Information

10 - 16 0 Bit-field of supported sub-functions
17 - 18 0100h OEM software revision
19 - 22 word offset OEM Vendor Name Pointer
23 - 26 word offset OEM Product Name Pointer
27 - 30 word offset OEM String Pointer

31 - 255 0 Reserved

Table C-2 OEM Desfault Strings in SubVBEInfoBlock Structure

Parameter Name Descripiton
OEM Vendor Name Pointer This is the BIOS segment offset to a hard-coded string. The

default Vendor Name string is "ATI Technologies Inc.".
OEM Product Name Pointer This is the BIOS segment offset to a hard-coded string. The

default Product Name string is "Rage XL".
OEM String Pointer This is the BIOS segment offset to a hard-coded string. The

default string is "VBE-FP".

To Call: AX = 4F11h VBE/FP function
BL = 01h Return flat panel information

ES:DI = Pointer to 32 byte buffer in which to place flat panel
information structure (see).

Returns: AX = VBE return status

Comments: This sub-function returns information about the current attached flat panel
device..

Due to code space limitations, this function may not be implemented in current
BIOS.

Table C-3 Flat Panel Information Structure

Offset (byte) Content
0 - 1 Horizontal size in pixels

Table C-1 SubVBEInfoBlock Structure (Continued)

Offset (byte) Content
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-3

Function 83h – LCD / Monitor / TV Detection
C.7 Function 83h – LCD / Monitor / TV Detection
This function allows the detection of what display is attached to the computer and what its
current status is.

2 - 3 Vertical size in lines

4 - 5

bit 0 = 0 Monochrome
= 1 Color

bit 1 = 0 Single panel construction
= 1 Dual (split) panel construction

bits [7-2] = 0 STN (passive matrix)
= 1 TFT (active matrix)
= 2 Other LCD
= 3 EL
= 4 Plasma

bits [15-8] = Reserved
6 Red bits per primary
7 Green bits per primary
8 Blue bits per primary
9 Reserved bits per primary

10 - 13 Size in KB of off-screen memory required for frame buffer
14 - 17 Pointer to reserved off screen memory for frame buffer
18 - 31 Reserved

To Call: AL = 83h LCD / monitor / TV detection
CH [0] =

=
0
1

Return monitor information based on previous detection
Return current monitor information by detection

CH [1] =
=

0
1

Return TV information based on previous detection
Return current TV information by detection

CH [2] =
=

0
1

Return LCD information based on previous detection
Return current LCD information by detection

CH [5 - 3] = 000b Reserved

Table C-3 Flat Panel Information Structure (Continued)

Offset (byte) Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-4 Proprietary and Confidential

Function 84h – Return / Select Active Display
C.8 Function 84h – Return / Select Active Display
This function allows application software to determine information about currently
attached active display and set the necessary among the available active display modes.

CH [6] = 1 Force CRT attacht

CH [7] = 1 Force TV attach

Returns: CL [1 - 0] = Monitor
=
=
=

0
1
2

No monitor
Monochrome monitor
Color monitor

CL [3 - 2] = LCD
=
=

0
1

No LCD attached
LCD attached

CL [5 - 4] = TV
=
=
=
=

0
1
2
3

No TV attached
TV attached to composite connector
TV attached to S-Video connector
TV attached to both composite and S-Video connectors

All other values are reserved.

CL [6] = 1 TV force detection state

CL [7] = 1 CRT force detection state

To Call: AL = 84h Return / Select Active Display
BH = 00h Return request

Returns: BL = Current display
BL [0] = 1 Flat panel
BL [1] = 1 CRT
BL [2] = 1 TV
BL [7 - 3] = 00000b Reserved

CL = Requested display
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-5

Function 85h – Return / Select Power Management Mode
C.9 Function 85h – Return / Select Power Management Mode

This function allows the ability to check / set between different power management and
counter values for timer mode.

CL [0] = 1 Flat panel
CL [1] = 1 CRT
CL [2] = 1 TV
CL [3] = 1 Auto-switch
CL [7-4] = 0000b Reserved

BH = Available display
BH [0] = 1 Flat panel
BH [1] = 1 CRT
BH [2] = 1 TV
BH [7-3] = 00000b Reserved

To Call: AL = 84h Return / Select Active Display
BH = 01h Select request
CL = Requested display

CL [0] = 1 Flat panel
CL [1] = 1 CRT
CL [2] = 1 TV
CL [3] = 1 Auto-switch
CL [7-4] = 0000b Reserved

Returns: BL = Current display
BL [0] = 1 Flat panel
BL [1] = 1 CRT
BL [2] = 1 TV
BL [7-3] = 00000b Reserved

To Call: AL = 85h Return / Select power management mode
BH = 00h Return request

Returns: CL = Power management mode
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-6 Proprietary and Confidential

Function 85h – Return / Select Power Management Mode
CL [0] = 0 Power management disabled
= 1 Power management enabled

CL [2-1] = 0 Pin mode (not supported in RAGE
XL)

= 1 Register mode
= 2 Timer mode (not supported in RAGE

XL)
= 3 PCI configuration space register (ACPI)

mode
CL [7-3] = 00000b Reserved

To Call: AL = 85h Return / Select power management mode
BH = 01h Enable / Disable power management request
CL = Power management mode

CL [0] = 0 Disable power management
= 1 Enable power management

CL [7-1] = 0000000b Reserved

To Call: AL = 85h Return / Select power management mode
BH = 02h Set counter value request (not supported by RAGEXL)

CL = Counter value for timer mode
CL [3 - 0] = Standby counter value in minutes
CL [7 - 4] = Suspend counter value in minutes
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-7

Function 87h – Return / Select Refresh Rate
C.10 Function 87h – Return / Select Refresh Rate
This Function provides for the ability to check the current refresh rate and set the
necessary refresh rate from the range of supported rates.

To Call: AL = 85h Return / Select power management mode
BH = 03h Switch power management mode

CL =
=

0
1

Switch power management to non-ACPI mode
Switch power management to ACPI mode

To Call: AL = 87h Return / Select refresh rate
BH = 00h Return request

Returns: CX = Supported refresh rate
CX [0] = 1 If 50 Hz is supported
CX [1] = 1 If 56 Hz is supported
CX [2] = 1 If 60 Hz is supported
CX [3] = 1 If 67 Hz is supported
CX [4] = 1 If 70 Hz is supported
CX [5] = 1 If 72 Hz is supported
CX [6] = 1 If 75 Hz is supported
CX [7] = 1 If 76 Hz is supported
CX [8] = 1 If 85 Hz is supported
CX [9] = 1 If 90 Hz is supported
CX [10] = 1 If 100 Hz is supported
CX [11] = 1 If 120 Hz is supported
CX [12] = 1 If 140 Hz is supported
CX [13] = 1 If 150 Hz is supported
CX [14] = 1 If 160 Hz is supported
CX [15] = 1 If 200 Hz is supported

DX = Selected refresh rate
DX [0] = 1 If 50 Hz is selected
DX [1] = 1 If 56 Hz is selected
DX [2] = 1 If 60 Hz is selected
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-8 Proprietary and Confidential

Function 88h – Return / Select Dithering
C.11 Function 88h – Return / Select Dithering
This Function allows the ability to check / set additional colors and shades from existing
palette.

DX [3] = 1 If 67 Hz is selected
DX [4] = 1 If 70 Hz is selected
DX [5] = 1 If 72 Hz is selected
DX [6] = 1 If 75 Hz is selected
DX [7] = 1 If 76 Hz is selected
DX [8] = 1 If 85 Hz is selected
DX [9] = 1 If 90 Hz is selected
DX [10] = 1 If 100 Hz is selected
DX [11] = 1 If 120 Hz is selected
DX [12] = 1 If 140 Hz is selected
DX [13] = 1 If 150 Hz is selected
DX [14] = 1 If 160 Hz is selected
DX [15] = 1 If 200 Hz is selected

To Call: AL = 87h Return / Select refresh rate
BH = 01h Select request

CX [0] = 1 To select 50 Hz or 43 HZ
CX [1] = 1 To select 56 Hz
CX [2] = 1 To select 60 Hz
CX [3] = 1 To select 67 Hz
CX [4] = 1 To select 70 Hz
CX [5] = 1 To select 72 Hz
CX [6] = 1 To select 75 Hz
CX [7] = 1 To select 76 Hz
CX [8] = 1 To select 85 Hz
CX [9] = 1 To select 90 Hz
CX [10] = 1 To select 100 Hz
CX [11] = 1 To select 120 Hz
CX [12] = 1 To select 140 Hz
CX [13] = 1 To select 150 Hz
CX [14] = 1 To select 160 Hz
CX [15] = 1 To select 200 Hz
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-9

Function 89h – Return / Select Cursor Blink Rate
C.12 Function 89h – Return / Select Cursor Blink Rate

This Function serves the purpose of checking / setting the rate of on-and-off cursor
illumination on a display screen.

To Call: AL = 88h Return / Select dithering level
BH = 00h Return Range Request

Returns: CH = Upper limit
CL = Current dithering

To Call: AL = 88h Return / Select dithering level
BH = 01h Select request
CL = Dithering to set

Comments: Valid dithering level to set is 0 to the upper limit returned by the “Return Range
Request”

To Call: AL = 89h Return / Select cursor blink rate
BH = 00h Return Range Request

Returns: CH = Upper limit
CL = Current cursor blink rate

To Call: AL = 89h Return / Select cursor blink rate
BH = 01h Select request
CL = Current cursor blink rate to set

Comments: Valid cursor blink rate to set is 0 to the upper limit returned by the “Return
Range Request”
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-10 Proprietary and Confidential

Function 8Ah – Hardware ICON Support (not supported in RAGE XL)
C.13 Function 8Ah – Hardware ICON Support
(not supported in RAGE XL)

There is no Hardware ICON in RAGE XL.

C.14 Function 8Dh – Return Current Display Information
This Function is used to check the current display information.

C.15 Function 8Eh - LCD Display Data Channel Support (DDC)
Sub-function 00h returns the LCD DDC support information of the BIOS and LCD.

To Call: AL = 8Dh Return current display information
BH = 00h Return current display is text or graphics

Returns: CX =
=

0
1

Current display is text mode
Current display is graphics mode

=

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 00h LCD DDC format supported by the BIOS and LCD

Returns: BX = 0 LCD DDC not supported
BX[1] = 1 DDC2B supported by LCD (I2C address 0A0h)
BX[3] = 1 DDC2B supported by LCD (I2C address 0A2h)
BX[4] = 1 DDC2B supported by LCD (I2C address 0A6h)

AX[1] = 1 DDC2B supported by BIOS (I2C address 0A0h)
AX[2] = 1 DDC2AB supported by BIOS
AX[3] = 1 DDC2B supported by BIOS (I2C address 0A2h and 0A6h)
AX[6] = 1 BIOS support detailed EDID timing at power up
AX[7] = 1 BIOS can use EDID information to setup the board at

power up
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-11

Function 8Eh - LCD Display Data Channel Support (DDC)
Sub-function 01h returns the 128 byte EDID information.

Sub-function 04h returns the 128 LCD DDC support information of the BIOS.

Sub-function 05h returns the 128 byte EDID information.

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 01h Return first block of EDID 1.x data

Returns: CX = Buffer size
DX:DI = Pointer to buffer

Comments: The BIOS does not check the validity of the EDID information captured from
the LCD. It is the caller who must verify the EDID information before using it.

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 04h Return LCD DDC format supported by the BIOS

Returns: BX = 0 DDC2B used for communication
AX[1] = 1 DDC2B supported by BIOS (I2C address 0A0h)
AX[2] = 1 DDC2AB supported by BIOS
AX[3] = 1 DDC2B supported by BIOS (I2C address 0A2h and 0A6h)
AX[6] = 1 BIOS support detailed EDID timing at power up
AX[7] = 1 BIOS can use EDID information to setup the board at

power up

Comments: Similar to Sub-function 0 except for no LCD DDC detection performing.

To Call: AL = 8Eh LCD Display Data Channel Suppport (DDC)
BL = 05h Return first block of EDID 2.x data

Returns: CX = Buffer size
DX:DI = Pointer to buffer

Comments: The BIOS does not check the validity of the EDID information captured from
the LCD. It is the caller who must verify the EDID information before using it.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-12 Proprietary and Confidential

Function 04Exxh – System BIOS Int 15h (not supported in RAGE XL)
C.16 Function 04Exxh – System BIOS Int 15h
(not supported in RAGE XL)

RAGE XL is meant for the desktop PC market. This function is included in the PC BIOS.

Sub-function 02h – Return Selected Expansion

Sub-function 03h – Return Selected Refresh Rate

To Call: AX = 4Exxh System BIOS Int 15h
BL = 02h Return Selected Expansion

Returns: BL [0] = 1 Enable text expansion
BL [1] = 1 Enable graphics expansion
BL [7 - 2] = 000000b Reserved

Comments: If the function call is not supported or failed, default value will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 03h Return Selected Refresh Rate

Returns: BX [0] = 1 To select 50 Hz
BX [1] = 1 To select 56 Hz
BX [2] = 1 To select 60 Hz
BX [3] = 1 To select 67 Hz
BX [4] = 1 To select 70 Hz
BX [5] = 1 To select 72 Hz
BX [6] = 1 To select 75 Hz
BX [7] = 1 To select 76 Hz
BX [8] = 1 To select 85 Hz
BX [9] = 1 To select 90 Hz
BX [10] = 1 To select 100 Hz
BX [11] = 1 To select 120 Hz
BX [12] = 1 To select 140 Hz
BX [13] = 1 To select 150 Hz
BX [14] = 1 To select 160 Hz
BX [15] = 1 To select 200 Hz

Comments: If the function call is not supported or failed, default value will be used.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-13

Function 04Exxh – System BIOS Int 15h (not supported in RAGE XL)
Sub-function 04h – Return Standby and Suspend Counter Values for
Power Management (Timer Mode only)

Sub-function 05h – Return TV Standard

Sub-function 06h – Return Power Management Mode

To Call: AX = 4Exxh System BIOS Int 15h
BL = 04h Return standby and suspend counter values for power

management (timer mode only)

Returns: BL [3 - 0] = Standby counter values in minutes
BL [7 - 4] = Suspend counter values in minutes

Comments: If the function call is not supported or failed, default values will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 05h Return TV standard

Returns: BL =
=
=
=
=
=

0
1
2
4
5
6

NTSC
PAL
PAL-M
NTSC-J
PAL-CN
PAL-N

Comments: If the function call is not supported or failed, default values will be used.

To Call: AX = 4Exxh System BIOS Int 15h
BL = 06h Return Power Management Mode

Returns: BL =
=

0
1

Non-ACPI mode
ACPI mode

Comments: If the function call is not supported or failed, default values will be used.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-14 Proprietary and Confidential

Function 04Exxh – System BIOS Int 15h (not supported in RAGE XL)
The format of every Functions return status words is as follows:

A non-zero value in the AH register should be treated as a general failure condition.

AH = 4Eh Function is supported
!= 4Eh Function is not supported

AL = 00h Function call successful
= 01h Function call failed
= 02h Function call not supported in current hardware

configuration
= 03h Function call invalid in current video mode
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential C-15

Function 04Exxh – System BIOS Int 15h (not supported in RAGE XL)
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
C-16 Proprietary and Confidential

Appendix D
TVOut Specific Functions

D.1 Introduction

This section will discuss only TVOut specific implementation. Information that is generic
to the RAGE PRO product family should be referenced back to the RAGE PRO
documentation.

D.2 Function 70h – Return / Select TVOut Configuration

This function returns / selects TVOut configuration information.

To Call: AL = 70h Return / Select TVOut configuration
BL = 00h Return request

Returns: BX = 00000h
DX = 0 TVOut is NOT detected
DX = ‘TB’ TVOut is detected but NOT supported

BX = 05442h
BX = TVOut is detected and supported
CL = 0 Current TV output is disabled
CL = 1 Current TV output is enabled

CH = 0 Use 29.49892 MHz reference clock
CH = 1 Use 28.63636 MHz reference clock
CH = 2 Use 14.31818 MHz reference clock
CH = 3 Use 27.00000 MHz reference clock

DL = 1 Enable TV output is requested
DL = 0 Disable TV output is requested

DH = xx TVOut revision code
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential D-1

Function 70h – Return / Select TVOut Configuration
To Call: AL = 70h Return / Select TVOut configuration
BL = 01h Select request (Not supported in LT PRO)
CL = 000h Disable TV output
CL = 080h Disable TV output with the feature connector bit preserved
CL = 001h Enable TV output

Comments: Not supported in LT PRO and RAGE Mobility

To Call: AL = 70h Return / Select TVOut configuration
BL = 02h Return TV attached information (Not supported in LT

PRO)

Returns: CL [0] = 1 If TV is detected through the composite connector
CL [1] = 1 If TV is detected through the S-video connector
CL [7 - 2] = 000000b

Comments: Not supported in LT PRO and RAGE Mobility

To Call: AL = 70h Return / Select TVOut configuration
BL = 03h Select TV standard (Not supported in LT PRO)

CL =
=
=
=
=
=
=
=

0 NTSC
1 PAL
2 PAL-M
3 PAL-60
4 NTSC-J
5 PAL-CN
6 PAL-N
9 SCART-PAL

Comments: Not supported in LT PRO. This sub-function is supported only in multi-TV
standard dynamic switching BIOS
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
D-2 Proprietary and Confidential

Function 71h – Return TV Standard
D.3 Function 71h – Return TV Standard

This function returns TV standard information.

To Call: AL = 70h Return / Select TVOut configuration
BL = 04h Return TV standard information table

Returns: BX = Offset of TV out information byte
CX = Size of TV standard information table
DX = Offset of TV standard information table

Comments: Supported only in RAGE Mobility

To Call: AL = 71h Return TV standard
BL = 00h Return current TV standard

Return: CL =
=
=
=
=
=
=
=

0 NTSC
1 PAL
2 PAL-M
3 PAL-60
4 NTSC-J
5 PAL-CN
6 PAL-N
9 SCART-PAL

To Call: AL = 71h Return TV standard

BL = 01h Return supported TV standard (Not supported in LT
PRO)

Return: CX [0]
CX [1]
CX [2]
CX [3]
CX [4]
CX [5]
CX [6]
CX [8 - 7]
CX [9]
CX [15 - 10]

=
=
=
=
=
=
=
=
=
=

1 If NTSC is supported
1 If PAL is supported
1 If PAL-M is supported
1 If PAL-60 is supported
1 If NTSC-J is supported
1 If PAL-CN is supported
1 If PAL-N is supported
00b Reserved
1 If SCART-PAL is supported
000000b Reserved
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential D-3

Function 72h – Re-initialize Digital Signal Processor
D.4 Function 72h – Re-initialize Digital Signal Processor
This function re-initializes the Digital signal processor’s FIFO.

D.5 Function 73h – Return / Select TVOut Auto-Display Switch
This function returns / selects TVOut auto-display switch information. This function is not
supported in LT PRO.

D.6 Function 74h – Return TVOut Aligner Information For Slow
Aligner Algorithm

This function returns / sets the TVOut aligner information using the slow aligner
algorithm. This function is not supported in LT PRO.

Comments: Not supported in LT PRO. This sub-function is supported only in multi-TV
standard dynamic switching BIOS

To Call: AL = 73h Return / Select TVOut auto-display switch
BL = 00h Return request (Not supported in LT PRO)

Return: CL =
=

0 TVOut auto-display switch disabled
1 TVOut auto-display switch enabled

Comments: Not supported in LT PRO and RAGE Mobility

To Call: AL = 73h Return / Select TVOut auto-display switch
BL = 01h Select request
CL =

=
0 Disable TVOut auto-display switch
1 Enable TVOut auto-display switch

Comments: Not supported in LT PRO and RAGE Mobility
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
D-4 Proprietary and Confidential

Function 75h – Return TVOut Aligner Group
D.7 Function 75h – Return TVOut Aligner Group
This function returns the aligner group of a specified resolution. This function is not
supported in LT PRO.

To Call: AL = 74h Return TVOut Aligner information for Slow Aligner
Algorithm

DX:BX = Pointer to a buffer of 64 bytes

Return: CX = Number of entries in the TVOut Aligner information buffer
DX:BX = TVOut Slow Aligner information

Comments: Not supported in LT PRO and RAGE Mobility.

Table D-1 TVOut Slow Aligner Information

Offset (byte) Content
0 - 3 Delay map A for modes in group 0
4 - 7 Delay map B for modes in group 0

8 Clock delay for modes in group 0
9 - 12 Delay map A for modes in group 1
13 - 16 Delay map B for modes in group 1

17 Clock delay for modes in group 1
18 - 21 Delay map A for modes in group 2
22 - 25 Delay map B for modes in group 2

26 Clock delay for modes in group 2
27 - 30 Delay map A for modes in group 3
31 - 34 Delay map B for modes in group 3

35 Clock delay for modes in group 3
36 - 39 Delay map A for modes in group 4
40 - 43 Delay map B for modes in group 4

44 Clock delay for modes in group 4
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential D-5

Function 76h – Return TVOut Aligner Information For Fast Aligner Algorithm
D.8 Function 76h – Return TVOut Aligner Information For Fast
Aligner Algorithm

This function returns the TVOut aligner information using the fast aligner algorithm.
This function is not supported in LT PRO.

To Call: AL = 75h Return TVOut Aligner group (for Slow Aligner Algorithm
only)

CX = Horizontal resolution
DX = Vertical resolution

Return: CL = Aligner group for the specified resolution

Comments: Not supported in LT PRO and RAGE Mobility.

To Call: AL = 76h Return TVOut Aligner information for Fast Aligner
Algorithm

DX:BX = Pointer to a buffer of 64 bytes

Return: DX:BX = TVOut Fast Aligner information

Comments: Not supported in LT PRO and RAGE Mobility.

Table D-2 TVOut Fast Aligner Information

Offset (byte) Content
0 - 1 Data_delay_const [0]
2 - 3 Data_delay_const [1]
4 - 5 Data_delay_const [2]
6 - 7 Data_delay_const [3]
8 - 9 Data_delay_const [4]

10 - 11 Data_delay_const [5]
12 - 13 Data_delay_const [6]
14 - 15 Data_delay_const [7]
16 - 17 Uncertainty
18 - 19 Ns_per_tap
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
D-6 Proprietary and Confidential

Appendix E
CRTC Parameters

E.1 Introduction

Note that all clock selects in the following tables assume an ATI18818 clock chip.

E.2 CRTC Parameters for 640x480

640x480 60Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 25.18MHz

Horizontal Vertical
Screen Total H_TOTAL 0x63 V_TOTAL 0x20C
Screen Display H_DISP 0x4F V_DISP 0x1DF
Sync Start H_SYNC_STRT 0x51 V_SYNC_STRT 0x1E9
Sync Width H_SYNC_WID 0x2C V_SYNC_WID 0x22
Resolution 640 480
Scan Frequency 31.469KHz 59.94Hz
Polarity (–) (–)
Sync Width 3.813us 12 chars 0.064ms 2 lines
Front Porch 0.636us 2 chars 0.318 ms 10 lines
Back Porch 1.907us 6 chars 1.048 ms 33 lines
Active Time 25.422us 80 chars 15.253ms 480 lines
Blank Time 6.356us 20 chars 1.430ms 45 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-1

CRTC Parameters for 640x480
640x480 72Hz Non-Interlaced

640x480 75Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 31.20MHz

Horizontal Vertical
Screen Total H_TOTAL 0x67 V_TOTAL 0x207
Screen Display H_DISP 0x4F V_DISP 0x1DF
Sync Start H_SYNC_STRT 0x52 V_SYNC_STRT 0x1E8
Sync Width H_SYNC_WID 0x25 V_SYNC_WID 0x23
Resolution 640 480
Scan Frequency 37.500KHz 72.12Hz
Polarity (–) (–)
Sync Width 1.282us 5 chars 0.080ms 3 lines
Front Porch 0.769us 3 chars 0.240ms 9 lines
Back Porch 4.103us 16 chars 0.747ms 28 lines
Active Time 20.513us 80 chars 12.800ms 480 lines
Blank Time 6.154us 24 chars 1.067ms 40 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 31.50MHz

Horizontal Vertical
Screen Total H_TOTAL 0x68 V_TOTAL 0x01F3
Screen Display H_DISP 0x4F V_DISP 0x01DF
Sync Start H_SYNC_STRT 0x51 V_SYNC_STRT 0x01E0
Sync Width H_SYNC_WID 0x28 V_SYNC_WID 0x23
Resolution 640 480
Scan Frequency 37.500KHz 75.00Hz
Polarity (–) (–)
Sync Width 2.032us 8 chars 0.080ms 3 lines
Front Porch 0.508us 2 chars 0.027ms 1 lines
Back Porch 3.810us 15 chars 0.427ms 16 lines
Active Time 20.317us 80 chars 12.800ms 480 lines
Blank Time 6.349us 25 chars 0.533ms 20 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-2 Proprietary and Confidential

CRTC Parameters for 640x480
640x480 90Hz Non-Interlaced

640x480 100Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 39.91MHz

Horizontal Vertical
Screen Total H_TOTAL 0x67 V_TOTAL 0x214
Screen Display H_DISP 0x4F V_DISP 0x01DF
Sync Start H_SYNC_STRT 0x53 V_SYNC_STRT 0x01F8
Sync Width H_SYNC_WID 0x25 V_SYNC_WID 0x2E
Resolution 640 480
Scan Frequency 47.969KHz 90.00Hz
Polarity (–) (–)
Sync Width 1.002us 5 chars 0.292ms 14 lines
Front Porch 0.902us 4 chars 0.521ms 25 lines
Back Porch 2.907us 15 chars 0.292ms 14 lines
Active Time 16.036us 80 chars 10.007ms 480 lines
Blank Time 4.811us 24 chars 1.105ms 53 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 44.90MHz

Horizontal Vertical
Screen Total H_TOTAL 0x69 V_TOTAL 0x0212
Screen Display H_DISP 0x4F V_DISP 0x01DF
Sync Start H_SYNC_STRT 0x53 V_SYNC_STRT 0x01F5

Sync Width H_SYNC_WID 0x30 V_SYNC_WID 0x2C
Resolution 640 480

Scan Frequency 52.948KHz 99.71Hz
Polarity (–) (–)

Sync Width 2.851us 16 chars 0.227ms 12 lines
Front Porch 0.801us 4 chars 0.416ms 22 lines
Back Porch 0.981us 6 chars 0.322ms 17 lines
Active Time 14.254us 80 chars 9.065ms 480 lines
Blank Time 4.633us 26 chars 0.963ms 51 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-3

CRTC Parameters for 800x600
C.36 CRTC Parameters for 800x600

800x600 48Hz Interlaced

800x600 56Hz Non-Interlaced

CRTC_GEN_CNTL 0X02
DOT_CLOCK 36.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x84 V_TOTAL 0x2BD
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x6D V_SYNC_STRT 0x262
Sync Width H_SYNC_WID 0x10 V_SYNC_WID 0xC
Resolution 800 600
Scan Frequency 33.835KHz 96.39Hz
Polarity (+) (+)
Sync Width 3.556us 16 chars 0.177ms 12 lines
Front Porch 2.222us 10 chars 0.163ms 11 lines
Back Porch 1.555us 7 chars 1.167ms 79 lines
Active Time 22.222us 100 chars 8.867ms 600 lines
Blank Time 7.333us 33 chars 1.507ms 102 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 36.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x7F V_TOTAL 0x270
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x66 V_SYNC_STRT 0x258
Sync Width H_SYNC_WID 0x9 V_SYNC_WID 0x2
Resolution 800 600
Scan Frequency 35.156KHz 56.25Hz
Polarity (+) (+)
Sync Width 2.000us 9 chars 0.057ms 2 lines
Front Porch 0.667us 3 chars 0.028ms 1 lines
Back Porch 3.555us 16 chars 0.626ms 22 lines
Active Time 22.222us 100 chars 17.067ms 600 lines
Blank Time 6.222us 28 chars 0.711ms 25 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-4 Proprietary and Confidential

CRTC Parameters for 800x600
800x600 60Hz Non-Interlaced

800x600 70Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 40.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x83 V_TOTAL 0x273
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x68 V_SYNC_STRT 0x258
Sync Width H_SYNC_WID 0x10 V_SYNC_WID 0x4
Resolution 800 600
Scan Frequency 37.879KHz 60.32Hz
Polarity (+) (+)
Sync Width 3.200us 16 chars 0.106ms 4 lines
Front Porch 1.000us 5 chars 0.026ms 1 lines
Back Porch 2.200us 11 chars 0.607ms 23 lines
Active Time 20.000us 100 chars 15.840ms 600 lines
Blank Time 6.400us 32 chars 0.739ms 28 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 44.90MHz

Horizontal Vertical
Screen Total H_TOTAL 0x7D V_TOTAL 0x27B
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x66 V_SYNC_STRT 0x260
Sync Width H_SYNC_WID 0x12 V_SYNC_WID 0x2C
Resolution 800 600
Scan Frequency 44.544KHz 70.04Hz
Polarity (+) (–)
Sync Width 3.207us 18 chars 0.269ms 12 lines
Front Porch 0.535us 3 chars 0.202ms 9 lines
Back Porch 0.891us 5 chars 0.337ms 15 lines
Active Time 17.817us 100 chars 13.470ms 600 lines
Blank Time 4.633us 26 chars 0.808ms 36 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-5

CRTC Parameters for 800x600
800x600 72Hz Non-Interlaced

800x600 75Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 50.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x81 V_TOTAL 0x299
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x6A V_SYNC_STRT 0x27C
Sync Width H_SYNC_WID 0xF V_SYNC_WID 0x6
Resolution 800 600
Scan Frequency 48.090KHz 72.19Hz
Polarity (+) (+)
Sync Width 2.400us 15 chars 0.125ms 6 lines
Front Porch 1.120us 7 chars 0.769ms 37 lines
Back Porch 1.280us 8 chars 0.478ms 23 lines
Active Time 16.000us 100 chars 12.477ms 600 lines
Blank Time 4.800us 30 chars 1.372ms 66 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 49.50MHz

Horizontal Vertical
Screen Total H_TOTAL 0x83 V_TOTAL 0x0270
Screen Display H_DISP 0x63 V_DISP 0x0257
Sync Start H_SYNC_STRT 0x65 V_SYNC_STRT 0x0258
Sync Width H_SYNC_WID 0x0A V_SYNC_WID 0x03
Resolution 800 600
Scan Frequency 46.875KHz 75.00Hz
Polarity (+) (+)
Sync Width 1.616us 10 chars 0.064ms 3 lines
Front Porch 0.323us 2 chars 0.021ms 1 lines
Back Porch 3.232us 20 chars 0.448ms 21 lines
Active Time 16.162us 100 chars 12.800ms 600 lines
Blank Time 5.172us 32 chars 0.533ms 25 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-6 Proprietary and Confidential

CRTC Parameters for 800x600
800x600 90Hz Non-Interlaced

800x600 100Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 56.64MHz

Horizontal Vertical
Screen Total H_TOTAL 0x7B V_TOTAL 0x27A
Screen Display H_DISP 0x63 V_DISP 0x257
Sync Start H_SYNC_STRT 0x64 V_SYNC_STRT 0x25F
Sync Width H_SYNC_WID 0x08 V_SYNC_WID 0x0B
Resolution 800 600
Scan Frequency 57.097KHz 89.92Hz
Polarity (+) (+)
Sync Width 1.130us 8 chars 0.193ms 11 lines
Front Porch 0.071us 1 chars 0.140ms 8 lines
Back Porch 2.189us 15 chars 0.280ms 16 lines
Active Time 14.124us 100 chars 10.508ms 600 lines
Blank Time 3.390us 24 chars 0.613ms 35 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 67.50MHz

Horizontal Vertical
Screen Total H_TOTAL 0x86 V_TOTAL 0x0270
Screen Display H_DISP 0x63 V_DISP 0x0257
Sync Start H_SYNC_STRT 0x63 V_SYNC_STRT 0x025E
Sync Width H_SYNC_WID 0x08 V_SYNC_WID 0x04
Resolution 800 600
Scan Frequency 62.500KHz 100.00Hz
Polarity (+) (+)
Sync Width 0.948us 8 chars 0.064ms 4 lines
Front Porch 0.000us 0 chars 0.112ms 7 lines
Back Porch 3.200us 27 chars 0.224ms 14 lines
Active Time 11.852us 100 chars 9.600ms 600 lines
Blank Time 4.148us 35 chars 0.400ms 25 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-7

CRTC Parameters for 1024x768
E.3 CRTC Parameters for 1024x768

1024x768 43Hz Interlaced

1024x768 60Hz Non-Interlaced

CRTC_GEN_CNTL 0x02
DOT_CLOCK 44.90MHz

Horizontal Vertical
Screen Total H_TOTAL 0x9D V_TOTAL 0x330
Screen Display H_DISP 0x7F V_DISP 0x2FF
Sync Start H_SYNC_STRT 0x80 V_SYNC_STRT 0x300
Sync Width H_SYNC_WID 0x16 V_SYNC_WID 0x8
Resolution 1024 768
Scan Frequency 35.522KHz 86.96Hz
Polarity (+) (+)
Sync Width 3.920us 22 chars 0.113ms 8 lines
Front Porch 0.178us 1 chars 0.014ms 1 lines
Back Porch 1.247us 7 chars 0.563ms 40 lines
Active Time 22.806us 128 chars 10.810ms 768 lines
Blank Time 5.345us 30 chars 0.690ms 49 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 65.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xA7 V_TOTAL 0x325
Screen Display H_DISP 0x7F V_DISP 0x2FF
Sync Start H_SYNC_STRT 0x82 V_SYNC_STRT 0x302
Sync Width H_SYNC_WID 0x31 V_SYNC_WID 0x26
Resolution 1024 768
Scan Frequency 48.363KHz 60.00Hz
Polarity (–) (–)
Sync Width 2.092us 17 chars 0.124ms 6 lines
Front Porch 0.369us 3 chars 0.062ms 3 lines
Back Porch 2.462us 20 chars 0.601ms 29 lines
Active Time 15.754us 128 chars 15.880ms 768 lines
Blank Time 4.923us 40 chars 0.786ms 38 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-8 Proprietary and Confidential

CRTC Parameters for 1024x768
1024X768 70Hz Non-Interlaced

1024x768 72Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 75.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xA5 V_TOTAL 0x325
Screen Display H_DISP 0x7F V_DISP 0x2FF
Sync Start H_SYNC_STRT 0x82 V_SYNC_STRT 0x302
Sync Width H_SYNC_WID 0x31 V_SYNC_WID 0x26
Resolution 1024 768
Scan Frequency 56.476KHz 70.07Hz
Polarity (–) (–)
Sync Width 1.813us 17 chars 0.106ms 6 lines
Front Porch 0.320us 3 chars 0.053ms 3 lines
Back Porch 1.921us 18 chars 0.514ms 29 lines
Active Time 13.653us 128 chars 13.599ms 768 lines
Blank Time 4.053us 38 chars 0.673ms 38 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 75.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xA0 V_TOTAL 0x325
Screen Display H_DISP 0x7F V_DISP 0x2FF
Sync Start H_SYNC_STRT 0x82 V_SYNC_STRT 0x302
Sync Width H_SYNC_WID 0x31 V_SYNC_WID 0x26
Resolution 10224 768
Scan Frequency 58.230KHz 72.245Hz
Polarity (–) (–)
Sync Width 1.813us 17 chars 0.103ms 6 lines
Front Porch 0.320us 3 chars 0.052ms 3 lines
Back Porch 1.387us 13 chars 0.498ms 29 lines
Active Time 13.653us 128 chars 13.189ms 768 lines
Blank Time 3.520us 33 chars 0.653ms 38 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-9

CRTC Parameters for 1024x768
1024x768 75Hz Non-Interlaced

1024x768 90Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 78.75MHz

Horizontal Vertical
Screen Total H_TOTAL 0xA3 V_TOTAL 0x031F
Screen Display H_DISP 0x7F V_DISP 0x02FF
Sync Start H_SYNC_STRT 0x81 V_SYNC_STRT 0x0300
Sync Width H_SYNC_WID 0x0C V_SYNC_WID 0x03
Resolution 1024 768
Scan Frequency 60.023KHz 75.03Hz
Polarity (+) (+)
Sync Width 1.219us 12 chars 0.050ms 3 lines
Front Porch 0.203us 2 chars 0.017ms 1 lines
Back Porch 2.235us 22 chars 0.466ms 28 lines
Active Time 13.003us 128 chars 12.795ms 768 lines
Blank Time 3.657us 36 chars 0.533ms 32 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 100.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xA3 V_TOTAL 0x34C
Screen Display H_DISP 0x7F V_DISP 0x2FF
Sync Start H_SYNC_STRT 0x7F V_SYNC_STRT 0x314
Sync Width H_SYNC_WID 0x2C V_SYNC_WID 0x2F
Resolution 1024 768
Scan Frequency 76.220KHz 90.20Hz
Polarity (–) (–)
Sync Width 0.960us 12 chars 0.197ms 15 lines
Front Porch 0.000us 0 chars 0.276ms 21 lines
Back Porch 1.920us 24 chars 0.537ms 41 lines
Active Time 10.240us 128 chars 10.076ms 768 lines
Blank Time 2.880us 36 chars 1.010ms 77 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-10 Proprietary and Confidential

CRTC Parameters for 1152x864
1024x768 100Hz Non-Interlaced

E.4 CRTC Parameters for 1152x864

1152x864 43Hz Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 110.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xAD V_TOTAL 0x0317
Screen Display H_DISP 0x7F V_DISP 0x02FF
Sync Start H_SYNC_STRT 0x7F V_SYNC_STRT 0x02FF
Sync Width H_SYNC_WID 0x2B V_SYNC_WID 0x28
Resolution 1024 768
Scan Frequency 79.023KHz 99.78Hz
Polarity (–) (–)
Sync Width 0.800us 11 chars 0.101ms 8 lines
Front Porch 0.000us 0 chars 0.000ms 0 lines
Back Porch 2.545us 35 chars 0.202ms 16 lines
Active Time 9.309us 128 chars 9.719ms 768 lines
Blank Time 3.345us 46 chars 0.304ms 24 lines

CRTC_GEN_CNTL 0x02
DOT_CLOCK 65.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xB0 V_TOTAL 0x041E
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x98 V_SYNC_STRT 0x03AD
Sync Width H_SYNC_WID 0x10 V_SYNC_WID 0x09
Resolution 1152 864
Scan Frequency 45.904KHz 87.02Hz
Polarity (+) (+)
Sync Width 1.969us 16 chars 0.098ms 9 lines
Front Porch 1.062us 9 chars 0.850ms 78 lines
Back Porch 1.031us 8 chars 1.133ms 104 lines
Active Time 17.723us 144 chars 9.411ms 864 lines
Blank Time 4.062us 33 chars 2.080ms 191 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-11

CRTC Parameters for 1152x864
1152X864 47Hz Interlaced

1152X864 60Hz Non-Interlaced

CRTC_GEN_CNTL 0x02
DOT_CLOCK 65.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xB4 V_TOTAL 0x03B2
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x9A V_SYNC_STRT 0x037D
Sync Width H_SYNC_WID 0x10 V_SYNC_WID 0x09
Resolution 1152 864
Scan Frequency 44.890KHz 94.80Hz
Polarity (+) (+)
Sync Width 1.969us 16 chars 0.100ms 9 lines
Front Porch 1.415us 11 chars 0.334ms 30 lines
Back Porch 1.170us 10 chars 0.490ms 44 lines
Active Time 17.723us 144 chars 9.624ms 864 lines
Blank Time 4.554us 37 chars 0.924ms 83 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 80.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xB5 V_TOTAL 0x0393
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x97 V_SYNC_STRT 0x0365
Sync Width H_SYNC_WID 0x0E V_SYNC_WID 0x05
Resolution 1152 864
Scan Frequency 54.945KHz 59.98Hz
Polarity (+) (+)
Sync Width 1.400us 14 chars 0.091ms 5 lines
Front Porch 0.800us 8 chars 0.109ms 6 lines
Back Porch 1.600us 16 chars 0.746ms 41 lines
Active Time 14.400us 144 chars 15.725ms 864 lines
Blank Time 3.800us 38 chars 0.946ms 52 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-12 Proprietary and Confidential

CRTC Parameters for 1152x864
1152X864 70Hz Non-Interlaced

1152X864 75Hz Non-Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 100.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xBC V_TOTAL 0x03B0
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x94 V_SYNC_STRT 0x036C
Sync Width H_SYNC_WID 0x13 V_SYNC_WID 0x0B
Resolution 1152 864
Scan Frequency 66.138KHz 69.99Hz
Polarity (+) (+)
Sync Width 1.520us 19 chars 0.166ms 11 lines
Front Porch 0.390us 5 chars 0.197ms 13 lines
Back Porch 1.690us 21 chars 0.862ms 57 lines
Active Time 11.520us 144 chars 13.064ms 864 lines
Blank Time 3.600us 45 chars 1.225ms 81 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 110.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xB6 V_TOTAL 0x03E9
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x92 V_SYNC_STRT 0x038C
Sync Width H_SYNC_WID 0x12 V_SYNC_WID 0x08
Resolution 1152 864
Scan Frequency 75.137KHz 74.99Hz
Polarity (+) (+)
Sync Width 1.309us 18 chars 0.106ms 8 lines
Front Porch 0.245us 3 chars 0.599ms 45 lines
Back Porch 1.282us 18 chars 1.132ms 85 lines
Active Time 10.473us 144 chars 11.499ms 864 lines
Blank Time 2.836us 39 chars 1.837ms 138 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-13

CRTC Parameters for 1280x1024

1152X864 80Hz Non-Interlaced

E.5 CRTC Parameters for 1280x1024

1280x1024 43Hz Interlaced

CRTC_GEN_CNTL 0x00
DOT_CLOCK 110.0MHz

Horizontal Vertical
Screen Total H_TOTAL 0xB3 V_TOTAL 0x03BD
Screen Display H_DISP 0x8F V_DISP 0x035F
Sync Start H_SYNC_STRT 0x91 V_SYNC_STRT 0x037D
Sync Width H_SYNC_WID 0x0E V_SYNC_WID 0x07
Resolution 1152 864
Scan Frequency 76.389KHz 79.74Hz
Polarity (+) (+)
Sync Width 1.018us 14 chars 0.092ms 7 lines
Front Porch 0.127us 2 chars 0.393ms 30 lines
Back Porch 1.473us 20 chars 0.747ms 57 lines
Active Time 10.473us 144 chars 11.311ms 864 lines
Blank Time 2.618us 36 chars 1.231ms 94 lines

CRTC_GEN_CNTL 0x02
DOT_CLOCK 80.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xC7 V_TOTAL 0x47C
Screen Display H_DISP 0x9F V_DISP 0x3FF
Sync Start H_SYNC_STRT 0xA9 V_SYNC_STRT 0x431
Sync Width H_SYNC_WID 0xA V_SYNC_WID 0xA
Resolution 1024 1024
Scan Frequency 50.000KHz 87.03Hz
Polarity (+) (+)
Sync Width 1.000us 10 chars 0.100ms 10 lines
Front Porch 1.000us 10 chars 0.500ms 50 lines
Back Porch 2.000us 20 chars 0.650ms 65 lines
Active Time 16.000us 160 chars 10.240ms 1024 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-14 Proprietary and Confidential

CRTC Parameters for 1280x1024
1280x1024 47Hz Interlaced

1280x1024 60Hz Non-Interlaced

Blank Time 4.000us 40 chars 1.250ms 125 lines

CRTC_GEN_CNTL 0x02
DOT_CLOCK 80.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xC7 V_TOTAL 0x41C
Screen Display H_DISP 0x9F V_DISP 0x3FF
Sync Start H_SYNC_STRT 0xA9 V_SYNC_STRT 0x400
Sync Width H_SYNC_WID 0xA V_SYNC_WID 0xA
Resolution 1280 1024
Scan Frequency 50.000KHz 94.97Hz
Polarity (+) (+)
Sync Width 1.000us 10 chars 0.100ms 10 lines
Front Porch 1.000us 10 chars 0.010ms 1 line
Back Porch 2.000us 20 chars 0.180ms 18 lines
Active Time 16.000us 160 chars 10.240ms 1024 lines
Blank Time 4.000us 40 chars 0.290ms 29 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 108.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xD2 V_TOTAL 0x429
Screen Display H_DISP 0x9F V_DISP 0x3FF
Sync Start H_SYNC_STRT 0xA5 V_SYNC_STRT 0x400
Sync Width H_SYNC_WID 0x0E V_SYNC_WID 0x03
Resolution 1280 1024
Scan Frequency 63.981KHz 60.02Hz
Polarity (+) (+)
Sync Width 1.037us 14 chars 0.047ms 3 lines
Front Porch 0.444us 6 chars 0.015ms 1 line
Back Porch 2.297us 31 chars 0.594ms 38 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-15

CRTC Parameters for 1280x1024
1280x1024 70Hz Non-Interlaced

1280x1024 74Hz Non-Interlaced

Active Time 11.852us 160 chars 16.005ms 1024 lines
Blank Time 3.778us 51 chars 0.656ms 42 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 126.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xD2 V_TOTAL 0x429
Screen Display H_DISP 0x9F V_DISP 0x3FF
Sync Start H_SYNC_STRT 0xA9 V_SYNC_STRT 0x400
Sync Width H_SYNC_WID 0xE V_SYNC_WID 0x5
Resolution 1280 1024
Scan Frequency 74.645KHz 70.02Hz
Polarity (+) (+)
Sync Width 0.889us 14 chars 0.067ms 5 lines
Front Porch 0.635us 10 chars 0.013ms 1 lines
Back Porch 1.714us 27 chars 0.483ms 36 lines
Active Time 10.159us 160 chars 13.718ms 1024 lines
Blank Time 3.238us 51 chars 0.563ms 42 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 135.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xD5 V_TOTAL 0x427
Screen Display H_DISP 0x9F V_DISP 0x3FF
Sync Start H_SYNC_STRT 0xA3 V_SYNC_STRT 0x3FF
Sync Width H_SYNC_WID 0x12 V_SYNC_WID 0x1E
Resolution 1280 1024
Scan Frequency 78.855KHz 74.11Hz
Polarity (+) (+)
Sync Width 1.067us 18 chars 0.380ms 30 lines
Front Porch 0.237us 4 chars 0.000ms 0 lines
Back Porch 1.896us 32 chars 0.127ms 10 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-16 Proprietary and Confidential

CRTC Parameters for 1600x1200
1280x1024 75Hz Non-Interlaced

E.6 CRTC Parameters for 1600x1200

1600x1200 60Hz Non-Interlaced

Active Time 9.481us 160 chars 12.986ms 1024 lines
Blank Time 3.200us 54 chars 0.507ms 40 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 135.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xD2 V_TOTAL 0x429
Screen Display H_DISP 0x9F V_DISP 0x03FF
Sync Start H_SYNC_STRT 0xA1 V_SYNC_STRT 0x0400
Sync Width H_SYNC_WID 0x12 V_SYNC_WID 0x03
Resolution 1280 1024
Scan Frequency 79.976KHz 75.02Hz
Polarity (+) (+)
Sync Width 1.067us 18 chars 0.038ms 3 lines
Front Porch 0.119us 2 chars 0.012ms 1 line
Back Porch 1.837us 31 chars 0.475ms 38 lines
Active Time 9.481us 160 chars 12.804ms 1024 lines
Blank Time 3.022us 51 chars 0.525ms 42 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 156.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0xFF V_TOTAL 0x4F1
Screen Display H_DISP 0xC7 V_DISP 0x4AF
Sync Start H_SYNC_STRT 0xCB V_SYNC_STRT 0x4B9
Sync Width H_SYNC_WID 0x34 V_SYNC_WID 0x28
Resolution 1600 1200
Scan Frequency 76.200KHz 60.00Hz
Polarity (–) (–)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-17

CRTC Parameters for 1600x1200
1600x1200 66Hz Non-Interlaced

1600x1200 76Hz Non-Interlaced

Sync Width 1.026us 20 chars 0.105ms 8 lines
Front Porch 0.205us 4 chars 0.131ms 10 lines
Back Porch 1.636us 32 chars 0.682ms 52 lines
Active Time 10.256us 200 chars 15.748ms 1200 lines
Blank Time 2.872us 56 chars 0.866ms 66 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 172.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x103 V_TOTAL 0x4DB
Screen Display H_DISP 0xC7 V_DISP 0x4AF
Sync Start H_SYNC_STRT 0xCC V_SYNC_STRT 0x4B2
Sync Width H_SYNC_WID 0x31 V_SYNC_WID 0x23
Resolution 1600 1200
Scan Frequency 82.700KHz 66.00Hz
Polarity (–) (–)
Sync Width 0.791us 17 chars 0.036ms 3 lines
Front Porch 0.233us 5 chars 0.036ms 3 lines
Back Porch 1.767us 38 chars 0.567ms 47 lines
Active Time 9.302us 200 chars 14.512ms 1200 lines
Blank Time 2.791us 60 chars 0.532ms 44 lines

CRTC_GEN_CNTL 0x00
DOT_CLOCK 198.00MHz

Horizontal Vertical
Screen Total H_TOTAL 0x103 V_TOTAL 0x4E1
Screen Display H_DISP 0xC7 V_DISP 0x4AF
Sync Start H_SYNC_STRT 0xCC V_SYNC_STRT 0x4B2
Sync Width H_SYNC_WID 0x31 V_SYNC_WID 0x25
Resolution 1600 1200
Scan Frequency 95.200KHz 76.00Hz
Polarity (–) (–)
Sync Width 0.687us 17 chars 0.052ms 5 lines
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-18 Proprietary and Confidential

CRTC Parameters for 1600x1200
Front Porch 0.202us 5 chars 0.032ms 3 lines
Back Porch 1.535us 38 chars 0.441ms 42 lines
Active Time 8.081us 200 chars 12.606ms 1200 lines
Blank Time 2.424us 60 chars 0.525ms 50 lines
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential E-19

CRTC Parameters for 1600x1200
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
E-20 Proprietary and Confidential

Appendix F
Parameter Table Format

F.1 Table Description

Parameter Table - VGA Modes

Byte Description
0h Number of text columns
1h Number of text rows
2h Character height (in pixels)
3h Display page length (LSB Byte)
4h Display page length (MSB Byte)
5h SEQ01 - Clocking Mode Register
6h SEQ02 - Map Mask Register
7h SEQ03 - Character Map Select Register
8h SEQ04 - Memory Mode Register
9h GENMO - Miscellaneous Output Register
Ah CRT00 - Horizontal Total Register
Bh CRT01 - Horizontal Display End Register
Ch CRT02 - Start Horizontal Blanking Register
Dh CRT03 - End Horizontal Blanking Register
Eh CRT04 - Start Horizontal Retrace Register
Fh CRT05 - End Horizontal Retrace Register
10h CRT06 - Vertical Total Register
11h CRT07 - Overflow Register
12h CRT08 - Preset Row Scan Register
13h CRT09- Maximum Scan Line Register
14h CRT0A- Cursor Start
15h CRT0B - Cursor End
16h CRT0C - Start Address High
17h CRT0D - Start Address Low
18h CRT0E - Cursor Location High
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-1

Table Description
19h CRT0F - Cursor Location Low
1Ah CRT10 - Start Vertical Retrace Register
1Bh CRT11 - End Vertical Retrace Register
1Ch CRT12- Vertical Display Enable End Register
1Dh CRT13 - Offset Register
1Eh CRT14 - Underline Location Register
1Fh CRT15 - Start Vertical Blanking Register
20h CRT16 - End Vertical Blanking Register
21h CRT17 - Mode Register
22h CRT18 - Line Compare Register
23h ATTR00 - Palette Register 0
24h ATTR01 - Palette Register 1
25h ATTR02 - Palette Register 2
26h ATTR03 - Palette Register 3
27h ATTR04 - Palette Register 4
28h ATTR05 - Palette Register 5
29h ATTR06 - Palette Register 6
2Ah ATTR07 - Palette Register 7
2Bh ATTR08 - Palette Register 8
2Ch ATTR09 - Palette Register 9
2Dh ATTR0A -Palette Register A
2Eh ATTR0B -Palette Register B
2Fh ATTR0C - Palette Register C
30h ATTR0D - Palette Register D
31h ATTR0E - Palette Register E
32h ATTR0F - Palette Register F
33h ATTR10 - Mode Control Register
34h ATTR11 - Overscan Color Register
35h ATTR12 - Color Map Enable Register
36h ATTR13 - Horizontal PEL Panning Register
37h GRA00 - Set/Reset Register
38h GRA01 - Enable Set/Reset Register

Parameter Table - VGA Modes

Byte Description
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-2 Proprietary and Confidential

Spare Bits in Parameter Table
F.2 Spare Bits in Parameter Table
The VIDEO BIOS makes use of some unused bits in the parameter table to store information
on the programming of extended registers. These bits are used to define the video memory
model, DAC programming information, CRTC and Pixel Clock selection.

39h GRA02 - Color Compare Register
3Ah GRA03 - Data Rotate Register
3Bh GRA04 - Read Map Select Register
3Ch GRA05 - Mode Register
3Dh GRA06 - Miscellaneous Register
3Eh GRA07 - Color Don't Care Register
3Fh GRA08 - Bit Mask Register

Parameter Table Byte 5
Bit 7 0 = Set ATI38[7] to 0

 1 = Set ATI38[7] to 1
Bit 6 0 = Set ATI38[6] to 0

 1 = Set ATI38[6] to 1

Parameter Table Byte 7
Bit 8 0 = Set ATI31[6] to 0

 1 = Set ATI31[6] to 1
Bit 7 0 = Set ATI3E[1] to 0

 1 = Set ATI3E[1] to 1

Parameter Table - VGA Modes

Byte Description
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-3

Spare Bits in Parameter Table
Parameter Table Byte 8
Bit 7 0 = Set ATI39[1] to 1

 1 = Set ATI39[1] to 0
Bit 6 0 = Set ATI3E[4] to 1

 1 = Set ATI3E[4] to 0
Bit 5 0 = Set ATI38[7,6] to 0,1

 1 = Set ATI38[7,6] to 0,0
Bit 4 0 = Set ATI30[0] to 0

 1 = Set ATI30[0] to 1
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-4 Proprietary and Confidential

Appendix G
Pixel Clock Tables

G.1 ATI-18811-1 Clock Chip

 Frequency
Output (MHz)

Select Bits

ATI3E[4] ATI39[1] GENMO[3] GENMO[2]

100.00 0 0 0 0
126.00 0 0 0 1
92.40 0 0 1 0
36.00 0 0 1 1
50.35 0 1 0 0
56.64 0 1 0 1

External
Frequency

0 1 1 0

44.90 0 1 1 1
135.00 1 0 0 0
32.00 1 0 0 1
110.00 1 0 1 0
80.00 1 0 1 1
39.91 1 1 0 0
44.90 1 1 0 1
75.00 1 1 1 0
65.00 1 1 1 1
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential G-1

ATI-18811-1 Clock Chip
This page intentionally left blank.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
G-2 Proprietary and Confidential

Appendix H
Scratch Registers

H.1 Scratch Registers and Their Contents
SCRATCH_REG0
(42ECh, 41C8h or base address +80h)
bit 7 Internal 1600 CRTC parameter will be used
bit 6 640x480 72Hz
bit 5 640x480 75Hz
bit 4 640x480 85Hz
bit 3 TV out , on/off state
bit 1-0 graphics controller power management states

SCRATCH_REG0 + 1 800x600 refresh rate information
(42EDh, 41C9h or base address + 81h)
bit 7 external crtc table indicator
bit 6 - 0 800x600 refresh mask

SCRATCH_REG0 + 2 reserved(can be 1280x1024)
 (42EEh, 41CAh or base address + 82h)

bit 7 DDC2 detected state
bit 6 reserved
bit 5 - 0 1280x1024 refresh mask

SCRATCH_REG0 + 3 1024x768 refresh rate information
(42EFh, 41CBh or base address + 83h)
bit 7 not used
bit 6 - 0 1024x768 refresh mask

SCRATCH_REG1 ROM location
(46ECh, 45C8h or base address + 84h)

SCRATCH_REG1 + 1
(46EDh, 45C9h or base address + 85h)
bit 7-4 RAMDAC subtype(for GX and CX controller only)
bit 7-6 not used, (?Tonly)
bit 5-4 CT,feature connector information (?T only)
bit 3 VBE20 used
bit 2 if set, disable the programming of DAC to VGA mode when

INT 10h is called, for BEDROCK only
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential H-1

Scratch Registers and Their Contents
bit 1 reserved
bit 0 sync on green enable

SCRATCH_REG1 + 2
(46EEh, 45CAh or base address + 86h)
bit 7 - 6 CRTC pitch size
bit 5 mux mode
bit 4 enable gamma correction or 256 color greyscale
bit 3 32bpp color orientation information
bit 2 TLC34075 output clock select or TVP3026 15/16bpp

information
bit 1 32bpp color orientation information
bit 0 current gamma correction or 256 color state

SCRATCH_REG1 + 3 Programmable dotclock information
(46EFh, 45CBh or base address + 87h)
1CE/BB(This register exists with VGA enable and in GX and CX controllers only)
bit 7-6 640x480 refresh rate information
bit 5-4 monochrome mode, color information
bit 1 if set, use VGAWONDER compatible paging mechanism

in packed pixel mode
bit 0 if set, disable the programming of DAC to VGA mode when

INT 10h is called.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
H-2 Proprietary and Confidential

Appendix I
ROM Header

I.1 ROM Header
There is information stored in the ROM header. This information is included for
completeness but not intended for application program developement.

Byte Offset Content
-1,-2 size of the structure in number of byte

0 =0, type definition
1 extended function code, 0a0h,0a1h...etc.
2 BIOS internal revision, major
3 BIOS internal revision, minor

4-5 io address, for sparse only
6-7 reserved
8-9 reserved

10-11 reserved
12-13 DRAM memory cycle in extended and VGA
14-15 VRAM memory cycle in extended and VGA
16-17 pointer to frequency table
18-19 pointer to logon message
20-21 pointer to misc. information
22-23 pci, bus, dev, init code
24-25 reserved
26-27 io base address if non-zero, block i/o enable
28-29 reserved(used)
30-31 reserved(used)
32-33 reserved(used)
34-35 int 10h offset, Coprocessor Only BIOS
36-37 int 10h segment, Coprocessor Only BIOS
38-39 monitor information, OEM specific
40-43 4K memory mapped location
44-47 reserved(used)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential I-1

ROM Header
The following code will locate the ROM header and extract the PCI bus device information
from the ROM header.

unsigned far *ip;
char far *cp;

FP_SEG(ip) = RomLocation(); /* assume RomLocation() will return the rom
segment address */

FP_OFF(ip) = 0x48; /* pointer to the ROM header */
FP_OFF(ip) = ip[0]; /* update array pointer to point to the ROM

header */
FP_SEG(cp) = FP_SEG(ip); /* update byte pointer to point to the ROM

header as well */
FP_OFF(cp) = FP_OFF(cp);

PciBusDev = ip[11]; /* get the pci bus dev word */

48-49 Tractor Beam
50-55 0ffffh,0,0ffffh
56-57 bios runtime address
58-59 reserved(used)
60-61 feature id
62-63 subsystem vendor id
64-65 subsystem id
66-67 device id
68-89 $

Byte Offset Content
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
I-2 Proprietary and Confidential

Appendix J
Programming PLL Registers in mach64 CT

Family

J.1 Introduction

J.2 PLL Registers
The PLL registers on the next page are accessed indirectly through the CLOCK_CNTL
register above. Example reads and writes of the PLL registers are given below. The
address CLOCK_CNTL0 represents bits 7:0, CLOCK_CNTL1 bits 15:8, and
CLOCK_CNTL2 bits 23:16.

PLL Register Read

iow8 CLOCK_CNTL1 PLL_ADDR; PLL address to read (PLL_WR_EN = 0)
ior8 CLOCK_CNTL2 PLL_DATA; data is put into variable PLL_DATA

CLOCK_CNTL [R/W] (MM:24, I/O:12, 49C8, 49CC, 4AEC)
Field Name Bit(s) Description

CLOCK_SEL 3:0 Non-VGA mode video clock frequency select. Internal clock
synthesizer (PLL) uses only bits 1 and 0. External clock chip uses
all four bits. In VGA mode, clock select is determined by
GENMO(3:2).

(Reserved) 5:4
CLOCK_STROBE 6 Controls STROBE signal to external clock synthesizer.
(Reserved) 7:8
PLL_WR_EN 9 Internal clock synthesizer (PLL) register write enable.

0 = PLL_DATA is read-only
1 = PLL_DATA is read/write

PLL_ADDR 13:10 Selects register in internal clock synthesizer (PLL) to read or
write.

(Reserved) 15:14

PLL_DATA 23:16 Internal clock synthesizer (PLL) read/write data. (see
PLL_WR_EN)

(Reserved) 31:24
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-1

PLL Register Write

iow8 CLOCK_CNTL1 PLL_ADDR | PLL_WR_EN; PLL address to write and
PLL_WR_EN = 1

iow8 CLOCK_CNTL2 PLL_DATA; PLL data to write

Note that only 8-bit I/O or memory read and write operations are recommended for PLL
register reads and writes.

PLL Registers
Addr Register Name Field Bits Function

0 Reserved
1 PLL_MACRO_CNTL Controls to analog PLL macro

(default = D4h)
PLL_PC_GAIN 2:0 Charge-pump gain setting
PLL_VC_GAIN 4:3 VCGEN gain setting
PLL_DUTY_CYC 7:5 Duty cycle control for pixel clock PLL

2 PLL_REF_DIV 7:0 Reference divider setting (default = 36h)
Note: There are only 6 bits in SGS CT-C2.

3 PLL_GEN_CNTL MCLK and general control
(default = 4Fh)

PLL_OVERRIDE 0 Power-down PLL or ext. bias PLL
PLL_MCLK_RST 1 Reset MCLK PLL
OSC_EN 2 Oscillator enable
EXT_CLK_EN 3 Force EXTFREQ0 to input
MCLK_SRC_SEL 6:4

EXT_CLK_CNTL
7 Enable CLKSEL and CLKSTRb outputs for

external clock chip.
Note: EXT_CLK_CNTL not in SGS CT-C2.
EXT_CLK_EN does both functions.

4 MCLK_FB_DIV 7:0 MCLK feedback divider
(default = 97h, 40MHz)

5 PLL_VCLK_CNTL Pixel clock control (default = 04h)
VCLK_SRC_SEL 1:0 00 : VCLK = CPUCLK

01 : VCLK = EXTFREQ0
10 : VCLK = XTALIN
11 : VCLK = PLLVCLK

PLL_VCLK_RST 2 Reset VCLK PLL
VCLK_INVERT 3 Invert VCLK to get opposite duty cycle
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-2 Proprietary and Confidential

Addr Register Name Field Bits Function
5 PLL_VCLK_CNTL Reserved 7:4
6 VCLK_POST_DIV Post dividers for VCLK 0-3

(default = 6Ah)
VCLK0_POST 1:0 Post divider for VCLK setting 0
VCLK1_POST 3:2 Post divider for VCLK setting 1
VCLK2_POST 5:4 Post divider for VCLK setting 2
VCLK3_POST 7:6 Post divider for VCLK setting 3

7 VCLK0_FB_DIV 7:0 Feedback divider for VCLK 0
(default = BEh)

8 VCLK1_FB_DIV 7:0 Feedback divider for VCLK 1
(default = D6h)

9 VCLK2_FB_DIV 7:0 Feedback divider for VCLK 2
(default = EEh)

10 VCLK3_FB_DIV 7:0 Feedback divider for VCLK 3
(default = 88h)

11:13 Reserved
14 PLL_TEST_CRTL 7:0 PLL test mode control (forced to 00h when

not in PLL test mode from
GEN_TEST_CTRL register).

15 PLL_TEST_COUNT 7:0 PLL test mode counter (read only, no
default)

Notes:
1. PLL_MACRO_CNTL settings control gain and duty cycle of analog PLL’s. Gain bits affect lock and
 jitter of PLL’s. This register should only be adjusted by the BIOS.
2. The reference divider setting must be in the range of 2h to FFh.
3. Oscillator enable is only supported in NEC foundry due to limitations in oscillator macro cells.
 Oscillator will always run in other foundries, no matter how this bit is set.
4. Suggested range for feedback dividers is 80h to FFh. Lower settings result in coarser control of
 output frequency and possibility of clock jitter. Feedback dividers below 02h will not function.
5. Pixel clock (VCLK) post-divider values are: 00=divide-by-1; 01=divide-by-2; 10=divide-by-4;
 11=divide-by-8.
6. All clock sources can be programmed to exceed the frequency limitations of the hardware. Do not
 attempt to program the PLL registers without a good understanding of the frequency limitations
 of all clock nets.
7. PLL_TEST_CTRL and PLL_TEST_COUNT are used only during manufacturing tests of
 analog PLL’s.

PLL Registers (Continued)
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-3

J.3 Clock Sources

All clock signals in mach64CT are derived from three master clocks — Bus Clock
(CPUCLK), MCLK and VCLK. MCLK and VCLK each has four different source
choices. These include internal PLLs (PLLMCLK and PLLVCLK), external clock pins
(CPUCLK and EXTFREQ0 or EXTFREQ1), XTALIN pin and the PLL reference
(PLLREFCLK) which XTALIN/reference divider setting. When RESETb goes active, all
clocks will switch to using CPUCLK as their source. After reset, either the test vectors
will select external sources or the BIOS will select internal sources.

J.4 External Clock Support
The external clock sources are supported by mach64CT, primarily for testing but also on a
board if required. The control signals for the external clock chip are multiplexed on the
feature connector pins. The feature connector may not be used when the external clock
sources are active.

Switching to external clocks is done as follows:

1. Disable the feature connector (DAC_FEA_CON_EN@DAC_CNTL, defaults to
disabled).

2. Set EXT_CLK_EN@PLL_GEN_CNTL = 1 to enable external clock support pins
(defaults to high).

3. Make sure the external clock signals are being driven into the chip.

4. Set MCLK_SRC_SEL@PLL_GEN_CNTL = 101 for EXTFREQ1 as MCLK.
Also set VCLK_SRC_SEL@PLL_VCLK_CNTL = 01 for EXTFREQ0 as VCLK.

Switching to internal clocks at boot time is done as follows:

1. Program reference, feedback and VCLK post dividers to the desired settings.

2. Write to PLL_GEN_CNTL, setting PLL_OVERRIDE = 0,
PLL_MCLK_RST = 0 and OSC_EN = 1.

3. Write to PLL_VCLK_CNTL, setting PLL_VCLK_RST = 0.

4. Allow 5ms for internal PLL to lock frequencies.

5. Set MCLK_SRC_SEL@PLL_GEN_CNTL = 001.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-4 Proprietary and Confidential

6. Set VCLK_SRC_SEL@PLL_VCLK_CNTL = 11.

7. Wait a few cycles (1 microsecond).

8. Set EXT_CLK_EN@PLL_GEN_CNTL = 0 to disable external clock support pins.

9. Enable the feature connector (DAC_FEA_CON_EN@DAC_CNTL = 1).

J.5 Frequency Limits
The design of mach64CT imposes the following limits on the clock source frequencies:

• MCLK may not exceed 68MHz or the limit imposed by memory type.

• VCLK is limited by the current display mode:

- In VGA, it may not exceed 80MHz.

- In 4bpp & 8bpp, it may be up to 135MHz.

- In 15 to 32bpp, it may not exceed 80MHz.

• CPUCLK may not exceed 33MHz.

The clock going out the feature connector (DCLK) may not exceed 40MHz according to
the VESA specification. In practice, a higher limit (possibly 80MHz) will be attempted.
When VCLK is set to exceed the limit, then DAC_FEA_CON_EN@DAC_CNTL must be
set low to turn off the feature connector.

J.6 Frequency Synthesis Description
To generate a specific output frequency, the reference (M), feedback (N), and post
dividers (P) must be loaded with the appropriate divide-down ratios. The internal PLLs for
CT and ET are optimized to lock to output frequencies in the range from 135 MHz to 68
MHz. The PLLs for other members of the mach64CT family are optimized to lock with
output frequencies from 100 MHz to 200 MHz. Setting the PLLs to lock outside these
ranges can result in increased jitter or total mis-function (no lock).

The PLLREFCLK lower limit is found based on the upper limit of the PLL lock range
(e.g. 135 MHz) and the maximum feedback divider (255) as follows:

Minimum PLLREFCLK = 135 MHz / (2 * 255) = 265 kHz
This is then used to find the reference divider based on the XTALIN frequency.
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-5

XTALIN is normally 14.318 MHz and the maximum reference divider M is found by:

M = Floor[14.318 MHz / 265 kHz] = 54
(the Floor function means round down)

Using the maximum reference divider allowed (in this case is 54) ensures the best clock
step resolution. However, lower reference dividers might be used to improve clock jitter.

Feedback dividers (N) should kept in the range 80h to FFh. The effective feedback divider
is twice the register setting due to the structure of the internal PLL. The post divider (P)
may be either 1, 2, 4, or 8.

To determine the N and P values to program for a target frequency, follow the procedure
below (where R is the frequency of XTALIN and T is the target frequency):

1. Calculate the value of P. Find the value of Q from the equation below and use it
to find P in the following table:

Q = (T * M) / (2 * R)

2. Calculate the value of N by using the value of P obtained in step 1. N is given by:

N = Q * P
The result N is rounded to the nearest whole number.

3. Determine the actual frequency. Given P and the rounded-off N, the actual output
frequency is found by:

Output_Frequency = (2 * R * N) / (M * P)
For example:

If R = 14.318 MHz and M = 54, then Q = 75.43 (if the desired frequency is 40MHz). The
table indicates P = 2 for this Q value. The calculation of N = Q*P gives 150.85 and
rounding up gives N = 151. The final output frequency is therefore 40.04MHz.

The maximum frequency that can be synthesized is the upper limit of PLL lock range for
the specific version of mach64CT. It may be 135, 160, 200, or 240 MHz. The minimum

Q Range Result
more than 255 M too big
127.5 to 255 P = 1
63.5 to 127.5 P = 2
31.5 to 63.5 P = 4
16 to 31.5 P = 8

less than 16 M too small
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-6 Proprietary and Confidential

frequency that can be synthesized depends on the largest post divider available. For
VCLK, P = 8 is always available and minimum VCLK = (2*R*128)/(M*8). For MCLK,
post divider settings of 4 and 8 are not available on some versions of the controller. The
minimum frequency setting for MCLK is limited to the correspondingly higher values for
these controllers.

Sample divider settings for typical Pixel and Memory clock frequencies when R = 14.318
MHz and M = 54:

Target Freq.
(MHz)

Post
Divider P

Feedback
Register N

Feedback
Register N

Actual Freq.
(MHz)

Percent
Error (%)

135 1 255 FFh 135.23 0.17
126 1 238 EEh 126.21 0.17
110 1 207 CFh 109.77 0.21
100 1 189 BDh 100.23 0.23
92.4 1 174 AEh 92.27 0.14
80 1 151 97h 80.08 0.1
75 1 141 8Dh 74.77 0.31
65 2 245 F5h 64.96 0.06

56.6 2 213 D5h 56.48 0.21
50.2 2 189 BDh 50.11 0.19

49.95 2 188 BCh 49.85 0.2
45 2 170 AAh 45.08 0.18

44.95 2 170 AAh 45.08 0.29
40 2 151 97h 40.04 0.1
36 2 136 88h 36.06 0.17

32.97 4 249 F9h 33.01 0.12
32 4 241 F1h 31.95 0.16

31.5 4 238 EEh 31.55 0.16
28.322 4 214 D6h 28.37 0.17
25.175 4 190 BEh 25.19 0.06
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential F-7

J.7 Duty Cycle Control

The DAC clock (VCLK) is the fastest clock on a mach64CT chip. When displayed in
1280x1024 or higher resolutions, VCLK will exceed 100 MHz. The DAC circuitry is
sensitive to the duty cycle of VCLK in this range. Duty cycle adjustment for VCLK is
available through PLL_DUTY_CYC@PLL_MACRO_CNTL and
VCLK_INVERT@PLL_VCLK_CNTL. The CT also has
VCLK_D_CYC@PLL_VCLK_CNTL, but these bits should not be used (leave at 00).

The optimal settings for the duty cycle control bits have been determined by ATI during
testing under extreme conditions of temperature and voltage. The BIOS sets the proper
values for each version of mach64CT. There should be no need to change these settings.

J.8 PLL Gain Settings

The internal PLLs have two settings that affect their gain characteristics. These are set by
PLL_PC_GAIN and PLL_VC_GAIN in the PLL_MACRO_CNTL register. They will
affect optimal lock ranges and jitter characteristics. ATI has determined the optimal
settings for these bits under extreme operating conditions. The BIOS sets these bits to
optimal values for each version of mach64CT. There should not be any need to modify
these values.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
F-8 Proprietary and Confidential

Appendix K
Display Register Setting Calculations

K.1 Display Register Setting Calculations

Please follow the temporary variables down to the end of the document, where they are
used to produce actual register settings.

Width of display fifo entry:

Depth of display fifo entry:

Expansion ratio: This ratio is only used during expansion mode, otherwise it is 1.

w = 32 for vga
64 for extended (using internal DAC)

1024 when using 64 bit external DAC and WRAM
2048 when using 128 bit external DAC and WRAM

 d = 32 when using internal DAC
8 when using external DAC and WRAM

exratio
destinationlinewidth

sourcelinewidth
---=
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential K-1

Display Register Setting Calculations
Number of XCLKS in a qword:

Minimum number of bits needed to hold the integer portion of x:

Maximum fifo size XCLK count representation:

Minimum number of bits needed to hold the integer portion of t:

Useable precision is the largest of the following two values:

Actual fifo size used is:

Display fifo off point is:

x XCLK MHz()
VCLK MHz()
--------------------------------- w

bpp
---------× exratio×=

bx CEIL INT x()()ln
2ln

----------------------------=

t x d×=

b1 CEIL INT t()()ln
2ln

---------------------------=

p MAX b1 5– bx 3–,()=

f MIN INT 25 p+

x
------------ 

  d, 
 =

roff CEIL x f 1–()×[]=
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
K-2 Proprietary and Confidential

Display Register Setting Calculations
Fixed latency values, pick number depending upon the configuration:

Display loop latency (two added for DISP _ACTIVE resynchronization):

Page fault clocks:

Number of cycles/qw:

Maximum random access cycle blocks:

32 bit 64 bit
l = 8 6 for dram

7 6 for hyperpage
9 8 for sdram
N/A 6 for wram

n = 1 for 64 bit dram/sdram/hyperpage
2 for 32 bit sdram/hyperpage
3 for 32 bit dram
4 for wram

rloop l 2+=

pfc tRP tRCD tCRD+ +=

rcc MAX tRP tRAS pfc, n+ +()=
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential K-3

Display Register Setting Calculations
Display fifo on point: (FLOOR[X] was removed to give room for error)

The mode is not guaranteed to work due to latency unless the following is met:

Actual Register Settings:

***Note: All values rounded down.

Meaning of the precision register

The display fifo is represented using a 16 bit register, with a variable decimal point to give
a representation of integer + fraction = 16 bits. The precision sets the decimal point of the
internal representation, of the DSP_ON register, the DSP_OFF register, and the
DSP_XCLKS_PER_QW. Thus, these registers need to be adjusted depending upon the
precision chosen. The following table illustrates the relationship to the value set in the
precision register to the accuracy of the internal representation, the meaning of DSP_ON,
DSP_OFF, and DSP_XCLKS_PER_QW.

DSP_ON(10:0) ron * 26-p

DSP_OFF(10:0) roff * 26-p

DSP_PRECISION(2:0) p
DSP_XCLKS_PER_QW(13:0) x * 211-p

DSP_LOOP_LATENCY rloop

ron rcc 1–() rcc FLOOR x[]–() pfc n+()+ +=

ron 2 rcc pfc+× n+=

ron rloop roff<+
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
K-4 Proprietary and Confidential

Display Register Setting Calculations
The behaviour of the display fifo counter is as follows:

1 When DISP_ACTIVE transitions from high to low, or EOF (end of frame) signal is
asserted, the counter is reset and the state machine starts on a new line.

2 An anchor address is asked for from the display engine for the next line. In the case of
VGA, the address of every QWORD is asked for from the display engine. As well,
the number of QWORDS for this display line are obtained.

3 A fifo “prefill” is performed. For every qword fetched from memory and placed into
the display fifo, the counter is incremented by the value in DSP_XCLKS_PER_QW.
This process continues until the counter is at a value greater than that value contained
in he DSP_OFF register.

4 When DISP_ACTIVE goes high (the display is actively draining from it’s fifo), a one
time subtraction of DSP_LOOP_LATENCY is made from the counter. Note that this
register does not need to be shifted by the precision, as this shifting is accomplished in
hardware. This subtraction is done to mask the control point of the display fifo from
the result point in such a way that we don’t need to have special “overfill” amounts
added to fill the display.

5 From that point on, each and every clock that DISP_ACTIVE is high, one integer
value is subtracted from the counter. Note that the precision register is taken into
account in hardware, so the correct decimal place is observed in this subtraction.

Table K-1

p Internal Representation with Implied Decimal Point f x off on*
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0 5.11 3.11 5.6 5.6
1 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 6.10 4.10 6.5 6.5
2 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 7.9 5.9 7.4 7.4
3 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8.8 6.8 8.3 8.3
4 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 9.7 7.7 9.2 9.2
5 9 8 7 6 5 4 3 2 1 0 5 4 3 2 1 0 10.6 8.6 10.1 10.1
6 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 11.5 9.5 11.0 11.0
7 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0 12.4 10.4 12.0 12.0

DSP_OFF 10 9 8 7 6 5 4 3 2 1 0 >function
DSP_ON 10 9 8 7 6 5 4 3 2 1 0 =function, *integer

only
XCLKS/
QW

13 12 11 10 9 8 7 6 5 4 3 2 1 0
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential K-5

Display Register Setting Calculations
6 When the counter reaches the DSP_ON point (note that this is only an integer
compare, the fractional bits are masked), the display controller starts asking for
qwords from the memory.

7 For every qword that will be placed into the display fifo (after a loop latency time
which we subtracted out earlier), the counter is incremented by
DSP_XCLKS_PER_QW at the same time it is decremented by one.

8 This process continues until the counter is at a value greater than that stored in the
DSP_OFF register. Note that the fractional bits of DSP_OFF are used in this
comparison.

9 Steps 6 to 8 are repeated until there are no more QWORDS to be fetched,
DISP_ACTIVE goes low, or EOF goes high.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
K-6 Proprietary and Confidential

Appendix L
Bibliography

Books

Foley, James D., van Dam, Andries, Feiner, Steven K. and Hughes, John F., Computer
Graphics: Principles and Practice (2nd ed.), Reading, Massachusetts: Addison-Wesley,
1990, ISBN 0-201-12110-7

While not directly related to PC graphics programming, Foley/van Dam provide a
good overview into the fundamentals of Computer Graphics as a general subject. The
text is mostly theoretical with some pseudocode but no working code examples. There
is, however, a fairly good derivation of Bresenham's Line drawing algorithm which is
used by most hardware graphics accelerators.

Ferraro, Richard F., Programmer's Guide to the EGA, VGA, and Super VGA Cards (3rd
ed.), Reading, Massachusetts: Addison-Wesley, 1994, ISBN 0-201-62490-7

A very handy book in understanding the details of programming for VGA and SVGA
cards. The third edition also covers programming for some Graphics Accelerator
boards including the IBM 8514/A and ATI's own mach32 series. This book provides
very good descriptions of all of the VGA's registers and contains numerous small
code examples in both C and 80x86 Assembly language. Highly recommended.

Abrash, Michael, Zen of Graphics Programming, Scottsdale, Arizona: Coriolis Group
Books, 1995, ISBN 1-883577-08-X

Abrash, who is known for his earlier book The Zen of Code Optimization as well as
for his column in Dr. Dobb's Journal, discusses optimized programming techniques
for VGA cards. The book comes with a diskette full of examples. Although he
specifically avoids SVGA and accelerators his coverage of the plain VGA's full
capabilities is thorough. This book also contains a section on Mode X programming.

Wilton, Richard, Programmer's Guide to PC Video Systems (2nd ed.), Redmond,
Washington: Microsoft Press, 1994, ISBN 1-55615-641-3

One of the classic references on PC Graphics Adapters at the hardware level. The
second addition also contains topics covering VGA 256-color graphics programming,
animation, 32-bit graphics programming, and the VESA BIOS Extension (VBE) for
SVGA graphics programming. The book also comes with a companion diskette with
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential L-1

source code examples.
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
L-2 Proprietary and Confidential

Index
A
Accelerator CRTC and DAC registers, 2-3,

6-1
Accelerator mode, 3-1

Draw engine, 3-1
Memory aperture, 3-1

Advanced topics, 7-1
Aperture, linear

Base address, 4-1
Organization, 2-1

B
Big aperture, 3-3
BIOS interface, 3-9
BIOS services

Non-Intel platforms, 2-7
Bitblt, 6-31

Transparent, 6-37
Sample code, 6-37

Block write, 7-22
Boot-time initialization, 7-19
Bresenham’s algorithm, 6-13
Bus Master Operation, 8-15
Bus Master Programming, 8-15

C
CALL ROM_ADDR

64h, A-1, C-1
Clock Chip, G-1
Colour compare circuit, 6-6

Block diagram, 6-4
Colour Interpolator/ Alpha Blender, 8-6
Colour Keyer, 8-6
Colour source, 6-24
Colour Space Converter, 8-7
Command FIFO

Resetting the FIFO
Sample code, 5-2

Waiting for draw engine idle, 5-2

Sample code, 5-2
Waiting for sufficient FIFO entries, 5-1

Sample code, 5-1
Command FIFO Queue, 5-1
Compatibility, A-1
Concurrency, 7-21
Creating a Descriptor Table, 8-15
CRT mode

Designing a custom CRT mode, 7-9
CRT Parameter, A-37
CRT Parameters

Spare Bits, F-3
Table Format, F-1

CRT synchronization, 7-5
Double buffering (memory), 7-5
Double buffering (palette), 7-6
Single buffering (delta framing), 7-7
Single buffering (synchronized), 7-6

CRTC compatibility, 3-7
CRTC parameters, E-1

1024x768 100Hz non-interlaced, E-11
1024x768 43Hz interlaced, E-8
1024x768 60Hz non-interlaced, E-8
1024x768 70Hz non-interlaced, E-9
1024x768 72Hz non-interlaced, E-9
1024x768 75Hz non-interlaced, E-10
1152x864 43Hz interlaced, E-11
1152x864 47Hz interlaced, E-12
1152x864 60Hz non-interlaced, E-12
1152x864 70Hz non-interlaced, E-13
1152x864 75Hz non-interlaced, E-13
1152x864 80Hz non-interlaced, E-14
1280x1024 43Hz interlaced, E-14
1280x1024 47Hz interlaced, E-15
1280x1024 60Hz non-interlaced, E-15
1280x1024 70Hz non-interlaced, E-16
1280x1024 74Hz non-interlaced, E-16
1280x1024 75Hz non-interlaced, E-17
1600x1200 60Hz non-interlaced, E-17
1600x1200 66Hz non-interlaced, E-18
1600x1200 76Hz non-interlaced, E-18
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential ix--1

Index
640x480 100Hz non-interlaced, E-3
640x480 60Hz non-interlaced, E-1
640x480 72Hz non-interlaced, E-2
640x480 75Hz non-interlaced, E-2
640x480 90Hz non-interlaced, E-3
800x600 100Hz non-interlaced, E-7
800x600 48Hz interlaced, E-4
800x600 56Hz non-interlaced, E-4
800x600 60Hz non-interlaced, E-5
800x600 70Hz non-interlaced, E-5
800x600 72Hz non-interlaced, E-6
800x600 75Hz non-interlaced, E-6
800x600 90Hz non-interlaced, E-7

D
Delta framing, 7-7
Designing a custom CRT mode, 7-9

Example CRTC calculations, 7-11
Destination trajectory 1, rectangular, 6-12
Destination trajectory 2, line, 6-13
Detecting the presence of a mach64, 3-5
Display Data Channel Support (DDC), A-11
Double buffering (memory), 7-5

In the interrupt service routine, 7-5
In the mainline application, 7-6

Double buffering (palette), 7-6
DPMS Service, Set DPMS Mode, A-9
Draw engine, 3-1

Context control registers, 2-3, 6-2
Initialization, 5-7

Sample code, 5-9
Trajectory control registers, 2-3, 6-2

Draw operations, 6-24
Colour source, 6-24
Lines, 6-25

Sample code, 6-25
Packed 24 bpp mode, 6-40

Sample code, 6-41
Pattern source, 6-38
Polygons, 7-1

Sample code, 7-2
Rectangles, 6-27

Sample code, 6-27
Specialized bitblt source, 6-35

Transparent bitblts, 6-37
Standard bitblt source, 6-31

General pattern, 6-32
General pattern with rotation, 6-33
Simple one-to-one, 6-31
Strictly linear, 6-34

Draw speed, 7-20

E
EEPROM

Data, H-1, I-1
EEPROM Data Structure, A-34
Efficiency, 7-21
Enable / Disable Video Input Capture Mode and

Return Video Capture
Capability, A-21

Expansion buses, 7-21
EISA, 7-21
ISA, 7-21
PCI, 7-21
VLB, 7-21

F
Features, 17
Fixed patterns, 6-38

Sample code, 6-38
Format Type 0, A-22
Format Type 1, A-23
Format Type 2, A-25
Front End Scaler Operation, 8-13
Front End Scaler Programming, 8-13
Function 00h, A-2
Function 01h, A-3
Function 02h, A-3
Function 03h, A-3
Function 04Exxh, B-35, C-13
Function 04h, A-4
Function 05h, A-4
Function 06h, A-4
Function 07h, A-5
Function 08h, A-7
Function 09h, A-7
Function 0Ah, A-8
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
ix--2 Proprietary and Confidential

Index
Function 0Bh, A-8
Function 0Ch, A-9
Function 0Dh, A-9
Function 0Eh, A-9
Function 0Fh, A-9
Function 10h, A-10
Function 11h, A-10
Function 12h, A-11
Function 13h, A-11
Function 14h, A-14
Function 15h, A-15
Function 16h, A-17
Function 18h, A-27
Function 19h, A-27
Function 70h, D-1
Function 71h, D-3
Function 72h, D-4
Function 73h, D-4
Function 74h, D-4
Function 75h, D-5
Function 76h, D-6
Function 81h, B-12
Function 82h, B-12
Function 83h, B-20, C-4
Function 84h, B-21, C-5
Function 85h, B-22, C-6
Function 86h, B-23
Function 87h, B-23, C-8
Function 88h, B-25, C-9
Function 89h, B-26, C-10
Function 8Ah, B-26, C-11
Function 8Bh, B-30
Function 8Ch, B-31
Function 8Dh, B-32, C-11
Function Calls, A-1, C-1

G
General pattern, 6-32

Sample code, 6-32
General pattern with rotation, 6-33

Sample code, 6-33

H
Hardware cursor, 6-43

Sample code, 6-44
Hardware ICON Support, B-26, C-11
Hardware Information, A-42
Hardware Overlay/Scaler, 8-4
Host data consumption, 6-7
Host rectangle fill

Sample code, 6-28

I
I/O mapping

Accessing I/O mapped registers, 2-5
ImpacTV Hooks, A-27
ImpacTV Mode Table Structure, B-11
In and Out Of Suspend State, B-23
Initialization

Boot-time, 7-19
BUS_CNTL, 7-19
CONFIG_CHIP_ID,

CONFIG_STAT0,
CONFIG_STAT1, 7-20

CONFIG_CNTL, 7-20
GEN_TEST_CNTL, 7-19
MEM_CNTL, 7-19
SCRATCH_REG0,

SCRATCH_REG1, 7-19
Interrupts, 7-13

L
LCD / Monitor / TV Detection, B-20, C-4
Line patterns, 6-36

Sample code, 6-36
Linear and paged memory apertures

Linear aperture
Base address, 4-1

Sample code, 4-2
Enabling, 4-3

Sample code, 4-3
Physical address conversion, 4-2
Using, 4-3

Sample code, 4-5
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential ix--3

Index
Linear vs. VGA aperture, 3-2
Big aperture, 3-3
Small apertures, 3-3
Standard 64KB VGA aperture, 3-2

Linear source, 6-34
Sample code, 6-34

Lines
Drawing, 6-25

Sample code, 6-25
Load Coprocessor CRTC Parameters, A-2
Load Coprocessor CRTC Parameters and Set

Display Mode, A-3
Load Coprocessor CRTC Parameters ans Set

Display Mode, A-3
Logical pixel data path, 6-2

Block diagram, 6-4

M
mach64 accelerator

Detection
Determining the I/O base

address, 3-6
mach64 accelerator

Deletions relative to mach32, 18
Detection, 3-5
Differences from mach32, 19
Enhancements relative to mach32, 18
Major features, 17
Overview, 12

mach64VT/GT Register Access, 8-2
Manual mode switching, 3-10, 7-7
Memory

Accessing memory mapped
registers, 2-3, 8-4

Aperture, 3-1
Big aperture, 3-3
Small dual paged aperture, 3-3
Standard paged 64KB VGA

aperture, 3-2
Bandwidth, 7-22

Example calculation, 7-24
Map

Intel-based platforms, 2-1
Non-Intel platforms, 2-6

Memory Aperture Service, A-4
Mode switching, 3-7

BIOS interface, 3-9
CRTC compatibility, 3-7
Designing a custom CRT mode, 7-9
Manual, 3-10, 7-7
VESA modes, 3-8

Mode Table Structure, A-32
Monochrome expansion bitblt, 6-35

Sample code, 6-35
Monochrome to two-colour colour expansion

circuit, 6-3
Block diagram, 6-4

N
Non-volatile storage, 7-7
Notations and conventions, 20

O
Operating modes

Accelerator mode, 3-1, 3-7
VGA mode, 3-1, 3-7

Overlay, 8-5
Overlay Programming, 8-11
Overlay Scaling, 8-11

P
Packed 24 bpp display mode

Drawing in, 6-40
Packed Pixel Modes, 8-8
Parameter Tables, F-1
Pattern consumption, 6-9
Pattern source, 6-38

Fixed patterns, 6-38
Sample code, 6-38

Performance issues, 7-20
Block write, 7-22
Concurrency, 7-21
Draw speed, 7-20
Efficiency, 7-21
Expansion buses, 7-21
Memory bandwidth, 7-22

Example, 7-24
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
ix--4 Proprietary and Confidential

Index
Redundancy, 7-20
Performing a Blt Using the Front End

Scaler, 8-13
Pixel

Depth, 6-23
Logical data path, 6-2

Pixel Clock Tables, G-1
Planar Pixel Modes, 8-8
Polygons, 7-1

Drawing, 7-1
Sample code, 7-2

Program a Specified Clock Entry, A-8
Protected mode vs. real mode

Linear aperture, 3-4

Q
Query Device, A-7
Query Structure, A-28

R
RAGE PRO CRT Parameter Table, A-37
Read EEPROM Data, A-3
Rectangle fill, 6-27

Sample code, 6-28
Redundancy, 7-20
Refresh Rate Structure, A-16
Refresh Rate Support, A-15
Register mapping

Accessing I/O mapped registers, 2-5
Accessing memory mapped

registers, 2-3, 8-4
Register summary, 2-3, 8-3

Accelerator CRTC and DAC
registers, 2-3, 6-1

Draw engine context control
registers, 2-3, 6-2

Draw engine trajectory control
registers, 2-3, 6-2

Setup and control registers, 2-3, 6-1
VGA, 2-3

Re-initialize Digital Signal Processor, D-4
Re-initialize the Graphics Controller’s

DSP, D-4

Return / Select 475 Lines VGA Mode, B-31
Return / Select Active Display, B-21, C-5
Return / Select Cursor Blink Rate, B-26,

C-10
Return / Select Dithering, B-25, C-9
Return / Select ImpacTV Auto-Display

Switch, D-4
Return / Select ImpacTV Configuration, D-1
Return / Select Power Management

Mode, B-22, C-6
Return / Select Refresh Rate, B-23, C-8
Return Clock Chip Frequency Table, A-8
Return Current Display Information, B-32,

C-11
Return Current DPMS State in LC, A-9
Return Current Graphics Controller Power

Management State, A-9
Return External Storage Device

Information, A-10
Return Graphics Hardware Capability

List, A-5
Return ImpacTV Aligner Group, D-5
Return ImpacTV Aligner Information For Fast

Aligner Algorithm, D-6
Return ImpacTV Aligner Information For Slow

Aligner Algorithm, D-4
Return Panel Identity Information, B-12
Return Panel Type and Controller

Supported, B-2
Return Query Device Data Structure in

Bytes, A-7
Return TV Standard, D-3
ROM Base Address, A-1
ROM Header, A-40

S
Sample code

Base address query, 4-2
BIOS services initialization, 3-10
Drawing

In packed 24 bpp mode, 6-41
Polygons, 7-2
Rectangles, 6-27

Hardware cursor programming, 6-44
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential ix--5

Index
Initializing
DAC, 5-4
Draw engine, 5-9

Line draw, 6-25
Line patterns, 6-36
Linear aperture

Enabling, 4-3
Using, 4-5

Linear source, 6-34
Monochrome expansion bitblt, 6-35
Physical address conversion, 4-2
Rectangle fill

Fixed patterns, 6-38
General 2D pattern, 6-32
Rotated 2D pattern, 6-33
Solid colour, 6-28
Using host data, 6-28

Resetting the command FIFO, 5-2
Scrolling and panning

Calculating CRTC_OFFSET, 7-5
Simple one-to-one bitblt, 6-31
Transparent bitblts, 6-37
Waiting for engine idle, 5-2

Save and Restore Graphics Controller
States, A-14

Scaler, 8-5
Scissoring and masking, 6-42
Scratch Registers, A-38
Scrolling and panning, 7-5

Sample code, 7-5
Set Display Mode, A-3
Set Graphics Controller Power Management

State, A-9
Set the DAC to Different States, A-10
Setting up a GUI Master Operation, 8-17
Setup and control registers, 2-3, 6-1
Short Query, A-11
Short Query Function, A-4
Simple one-to-one bitblt, 6-31

Sample code, 6-31
Single buffering (delta framing), 7-7
Single buffering (synchronized), 7-6
Solid rectangle fill, 6-27

Sample code, 6-28
Source and destination

Alignment, 6-20
Mixing logic, 6-22
Trajectories, 6-10

Source trajectory 1, strictly linear, 6-15
Source trajectory 2, unbounded Y, 6-15
Source trajectory 3, general pattern, 6-16
Source trajectory 4, general pattern with

rotation, 6-17
Specialized bitblt source, 6-35
Strictly linear, 6-34

Sample code, 6-34
System BIOS Int 15h, B-35, C-13
System Bus Master Transfer, 8-17

T
Trajectories, 6-10

Destination trajectory 1,
rectangular, 6-12

Destination trajectory 2, line, 6-13
Side effects, 6-19
Source trajectory 1, strictly linear, 6-15
Source trajectory 2, unbounded Y, 6-15
Source trajectory 3, general pattern, 6-16
Source trajectory 4, general pattern with

rotation, 6-17
Trajectory modifier 1,

SRC_BYTE_ALIGN, 6-18
Trajectory modifier 2,

DST_POLYGON_EN, 6-18
Trajectory modifier 3,

DP_BYTE_PIX_ORDER, 6-19
Transparent bitblts, 6-37

Sample code, 6-37
TV-Out, A-41
TV-Out Information, A-41

U
Unpacker / Dynamic Range Corrector, 8-10
UV Interpolation, 8-12

V
VESA BIOS Extensions / Flat Panel

Functions, B-12
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
ix--6 Proprietary and Confidential

Index
VESA mode support, 3-8
VGA interaction, 4-6
VGA mode, 3-1
VGA registers, 2-3
Video Feature Support, A-17
Viode Mode Support Determination, A-7

W
Write EEPROM Data, A-4
© 2000 ATI Technologies Inc. RAGE PRO and Derivatives Programmer’s Guide
Proprietary and Confidential ix--7

Index
RAGE PRO and Derivatives Programmer’s Guide © 2000 ATI Technologies Inc.
ix--8 Proprietary and Confidential

	Overview
	1.1 Introduction
	1.2 Brief History of ATI Graphics Products
	1.2.1 VGAWONDER
	1.2.2 mach8
	1.2.3 mach32
	1.2.4 mach64

	1.3 mach64CT Family
	1.3.1 mach64VT
	1.3.2 mach64GT (3D RAGE, RAGE II, II+, IIC, RAGE PRO)
	1.3.3 mach64LB (RAGE LT-PRO)
	1.3.4 mach64GM (RAGE XL)
	1.3.5 mach64LM (RAGE MOBILITY M/P/ M1)

	1.4 Features
	1.4.1 mach64 Major Features
	1.4.2 Functional Enhancements Relative To mach32
	1.4.3 Deletions Relative To mach32
	1.4.4 Functional Differences From mach32

	1.5 Overview of the Manual
	1.5.1 Chapter-By-Chapter Summary
	1.5.2 Notations And Conventions Used In This Manual

	Using the mach64
	2.1 Introduction
	2.2 Intel Based Architecture
	2.2.1 Memory Map
	2.2.2 BIOS Services
	2.2.3 Registers

	2.3 Non-Intel Based Architecture
	2.3.1 Memory Map
	2.3.2 BIOS Services
	2.3.3 Registers

	Getting Started
	3.1 Introduction
	3.2 Before you start
	3.2.1 Accelerator vs. VGA
	3.2.2 Linear Aperture vs. VGA Aperture
	3.2.3 Protected Mode vs. Real Mode

	3.3 mach64 Detection
	3.3.1 Card Detection
	3.3.2 I/O Base
	3.3.3 Read/Write Test
	3.3.4 CONFIG_CHIP_ID

	3.4 Mode Switching
	3.4.1 BIOS Interface
	3.4.2 Manual Mode Switching and Custom CRT Modes

	Linear Aperture
	4.1 Introduction
	4.2 Aperture Base Address
	4.3 Convert Physical Address
	4.4 Enable the Aperture
	4.5 Using the Linear Aperture
	4.5.1 Memory Organization Of Pixels

	4.6 Complete Example of Using the Aperture
	4.7 VGA Interaction

	Engine Initialization
	5.1 Introduction
	5.2 Background Information on the mach64 Engine
	5.2.1 Command FIFO Queue
	5.2.2 Other Essentials

	5.3 Preliminary Essentials
	5.3.1 mach64 Detection
	5.3.2 Hardware Query
	5.3.3 Save/Restore Old Video Mode Information
	5.3.4 Open Mode
	5.3.5 Initializing The Engine

	5.4 Opening and Closing a Mode
	5.4.1 Opening
	5.4.2 Reading from the Palette
	5.4.3 Writing to the Palette

	5.5 Initializing the Engine
	5.5.1 Setup Standard Engine Context
	5.5.2 InitEngine Example

	Engine Operations
	6.1 Introduction
	6.2 Background Information
	6.2.1 Details About the Registers
	6.2.2 Logical Pixel Data Path
	6.2.3 Trajectories
	6.2.4 Side Effects Of Trajectories
	6.2.5 Source And Destination Alignment
	6.2.6 Source and Destination Mixing Logic
	6.2.7 Remarks On Pixel Depth

	6.3 Draw Operations
	6.3.1 Color Source
	6.3.2 Standard BitBlt Source
	6.3.3 Specialized BitBlt Source
	6.3.4 Pattern Source

	6.4 Miscellaneous Operations
	6.4.1 Drawing In Packed 24 Bit Per Pixel Mode
	6.4.2 Scissoring and Masking
	6.4.3 Hardware Cursor

	Advanced Topics
	7.1 Introduction
	7.2 Polygons
	7.3 Scrolling and Panning
	7.4 CRT Synchronization and Animation
	7.4.1 Double Buffering (Memory)
	7.4.2 Double Buffering (Palette)
	7.4.3 Single Buffering (Synchronized)
	7.4.4 Single Buffering (Delta Framing)

	7.5 Manual Mode Switching And Custom CRT Modes
	7.5.1 Manual Mode Switching
	7.5.2 Designing A Custom CRT Mode

	7.6 Interrupts
	7.7 Off-Screen Memory Management
	7.8 Boot -Time Initialization
	7.9 Performance Issues
	7.9.1 Redundancy
	7.9.2 Draw Speed
	7.9.3 Concurrency
	7.9.4 Efficiency
	7.9.5 Expansion Buses
	7.9.6 Block Write
	7.9.7 Memory Bandwidth
	7.9.8 Performance

	mach64VT/GT Specific Features
	8.1 Introduction
	8.2 Summary of Additional Features
	8.3 mach64VT/GT Register Access
	8.3.1 Memory Map
	8.3.2 Determining Register Address
	8.3.3 Enabling Register Block 1

	8.4 Hardware Overlay/Scaler
	8.4.1 Overlay
	8.4.2 Scaler
	8.4.3 Color Keyer
	8.4.4 Color Interpolator/ Alpha Blender
	8.4.5 Color Space Converter

	8.5 Packed Pixel Modes
	8.6 Planar Pixel Modes
	8.7 Unpacker / Dynamic Range Corrector
	8.8 Overlay Programming
	8.8.1 Overlay Scaling
	8.8.2 UV Interpolation

	8.9 Front End Scaler Programming
	8.9.1 Front End Scaler Operation
	8.9.2 Performing a Blt Using the Front End Scaler

	8.10 Bus Master Programming
	8.10.1 Bus Master Operation
	8.10.2 Creating a Descriptor Table
	8.10.3 Setting up a System Bus Master Transfer
	8.10.4 Setting up a GUI Master Operation

	Video BIOS Functions Specification
	A.1 Calculating ROM Base Address
	A.2 Function Calls
	A.3 Compatibility
	A.4 Function 00h – Load Coprocessor CRTC Parameters
	A.5 Function 01h – Set Display Mode
	A.6 Function 02h – Load Coprocessor CRTC Parameters and Set Display Mode
	A.7 Function 03h – Read EEPROM Data
	A.8 Function 04h – Write EEPROM Data
	A.9 Function 05h – Memory Aperture Service
	A.10 Function 06h – Short Query Function
	A.11 Function 07h – Return Graphics Hardware Capability List
	Table A-1 Maximum Dot Clock Information (DACMASK / RAMMASK)
	Table A-2 Maximum Dot Clock Information (DACTYPE / RAMTYPE)

	A.12 Function 08h – Return Query Device Data Structure in Bytes
	A.13 Function 09h – Query Device
	A.14 Function 0Ah – Return Clock Chip Frequency Table
	A.15 Function 0Bh – Program a Specified Clock Entry
	A.16 Function 0Ch – DPMS Service, Set DPMS Mode
	A.17 Function 0Dh – Return Current DPMS State in LC
	A.18 Function 0Eh – Set Graphics Controller Power Management State
	A.19 Function 0Fh – Return Current Graphics Controller Power Management State
	A.20 Function 10h – Set the DAC to Different States
	A.21 Function 11h – Return External Storage Device Information
	A.22 Function 12h – Short Query
	A.23 Function 13h – Display Data Channel Support (DDC)
	A.24 Function 14h – Save and Restore Graphics Controller States
	A.25 Function 15h – Refresh Rate Support
	A.26 Function 16h – Video Feature Support
	Table A-3 Video Feature Structure �

	A.27 Function 17h – Enable / Disable Video Input Capture Mode and Return Video Capture Capability
	Table A-4 Format Type 0
	Table A-5 Format Type 1

	A.28 Function 18h – Reserved for UMA
	A.29 Function 19h – TVOut Hooks (not supported in LT PRO)
	A.30 Query Structure
	Table A-6 Query Structure�

	A.31 Mode Table Structure
	Table A-7 Installed Mode Tables �

	A.32 EEPROM Data Structure
	Table A-8 EEPROM Data Structure �

	A.33 CRT Parameter
	Table A-9 RAGE PRO CRT Parameter Table �

	A.34 Scratch Registers
	Table A-10 Scratch Registers �

	A.35 ROM Header
	Table A-11 ROM Header Information �
	Table A-12 TVOut Information
	Table A-13 Hardware Information �
	Table A-14 Driver Information Table �
	Table A-15 Panel EDID Override Table �
	Table A-16 Panel EDID Override Table Format�

	3D RAGE LT PRO and RAGE Mobility Specific Functions
	B.1 Introduction
	B.2 Function Calls
	B.3 Extended ROM Services
	B.4 Function 80h - Return Panel Type and Controller Supported Information
	B.5 Function 81h - Return Panel Identity Information
	B.6 Function 82h – VESA BIOS Extensions / Flat Panel Functions
	B.7 Function 83h – LCD / Monitor / TV Detection
	B.8 Function 84h – Return / Select Active Display
	B.9 Function 85h – Return / Select Power Management Mode
	B.10 Function 86h – In and Out Of Suspend State (not supported in LT PRO and Mobility)
	B.11 Function 87h – Return / Select Refresh Rate
	B.12 Function 88h – Return / Select Dithering
	B.13 Function 89h – Return / Select Cursor Blink Rate
	B.14 Function 8Ah – Hardware ICON Support
	B.15 Function 8Bh – Set CMOS Information
	B.16 Function 8Ch – Return / Select 475 Lines VGA Mode
	B.17 Function 8Dh – Return Current Display Information
	B.18 Function 8Eh - LCD Display Data Channel Support (DDC)
	B.19 Function 8Fh – Get / Set Video BIOS Information
	B.20 Function 04Exxh – System BIOS Int 15h

	RAGE XL Specific Functions
	C.1 Introduction
	C.2 Function Calls
	C.3 Function 80h - Return Panel Type and Controller Supported Information (not supported in RAGE XL)
	C.4 Function 81h - Return Panel Identity Information (not supported in RAGE XL)
	C.5 Function 82h – VESA BIOS Extensions / Flat Panel Functions (not supported in RAGE XL)
	C.6 Function 4F11h – VESA VBE / Flat Panel BIOS
	Table C-1 SubVBEInfoBlock Structure �
	Table C-2 OEM Desfault Strings in SubVBEInfoBlock Structure �
	Table C-3 Flat Panel Information Structure �

	C.7 Function 83h – LCD / Monitor / TV Detection
	C.8 Function 84h – Return / Select Active Display
	C.9 Function 85h – Return / Select Power Management Mode
	C.10 Function 87h – Return / Select Refresh Rate
	C.11 Function 88h – Return / Select Dithering
	C.12 Function 89h – Return / Select Cursor Blink Rate
	C.13 Function 8Ah – Hardware ICON Support (not supported in RAGE XL)
	C.14 Function 8Dh – Return Current Display Information
	C.15 Function 8Eh - LCD Display Data Channel Support (DDC)
	C.16 Function 04Exxh – System BIOS Int 15h (not supported in RAGE XL)

	TVOut Specific Functions
	D.1 Introduction
	D.2 Function 70h – Return / Select TVOut Configuration
	D.3 Function 71h – Return TV Standard
	D.4 Function 72h – Re-initialize Digital Signal Processor
	D.5 Function 73h – Return / Select TVOut Auto-Display Switch
	D.6 Function 74h – Return TVOut Aligner Information For Slow Aligner Algorithm
	Table D-1 TVOut Slow Aligner Information �

	D.7 Function 75h – Return TVOut Aligner Group
	D.8 Function 76h – Return TVOut Aligner Information For Fast Aligner Algorithm
	Table D-2 TVOut Fast Aligner Information �

	CRTC Parameters
	E.1 Introduction
	E.2 CRTC Parameters for 640x480
	C.36 CRTC Parameters for 800x600
	E.3 CRTC Parameters for 1024x768
	E.4 CRTC Parameters for 1152x864
	E.5 CRTC Parameters for 1280x1024
	E.6 CRTC Parameters for 1600x1200

	Parameter Table Format
	F.1 Table Description
	F.2 Spare Bits in Parameter Table

	Pixel Clock Tables
	G.1 ATI-18811-1 Clock Chip

	Scratch Registers
	H.1 Scratch Registers and Their Contents

	ROM Header
	I.1 ROM Header

	Programming PLL Registers in mach64 CT Family
	J.1 Introduction
	J.2 PLL Registers
	J.3 Clock Sources
	J.4 External Clock Support
	J.5 Frequency Limits
	J.6 Frequency Synthesis Description
	J.7 Duty Cycle Control
	J.8 PLL Gain Settings

	Display Register Setting Calculations
	K.1 Display Register Setting Calculations

	Bibliography
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

